An engineering platform for trustworthy AI
AI’s capabilities, limitations, ethics issues

Capabilities
- Data-driven approaches
 - Learning from data
 - GANs
 - Transformers
 - Computer vision
 - Natural Language Interpretation and Generation
- Rule-based, symbolic, and logical approaches
 - Explicit procedure to solve a problem
 - Reasoning, planning, scheduling, optimization for complex problems

Limitations
- Generalizability and Abstraction
- Robustness and Resiliency
- Contextual awareness
- Multi-agent cooperation
- Resource efficiency (data, energy, computing power)
- Adaptability
- Causality

Ethics issues
- Trust
- Fairness, robustness, explainability, causality, transparency
- Data governance, privacy, liability, human agency
- Impact on work and society
- AI autonomy vs augmented intelligence
- Real vs online life, metrics of success/goals
Conclusions

The AI has made remarkable progress.
Leaps forward in language- and image-processing tasks.
Applications like healthcare and self driving cars.
Still far short of the field’s founding aspirations

Inflection point: Urgent to consider downsides.
Automating decisions at scale carries risks.
People misled, discriminated against, physically harmed.
Historical data can exacerbate biases/inequalities.
Social sciences part of broader AI conversation.
Ongoing engagement essential.

Governments need to:
Recognize the importance of AI, move quickly.
Keep people informed, support broad education.

AI research community needs to:
Learn to share findings in informative/actionable ways.
Avoid hype and discuss dangers and benefits.
Incorporate AI into community-wide systems.
Make goal to empower, not devalue, people.

5 walls of AI

- Trust
- Energy
- Security
- Interaction
- Inhumanity
Trustworthy & certification AI: from data/algo to AI SW & Systems Engineering

How to design, deploy, maintain, certify AI based critical systems?

Technological pillar
DATAS, AI ALGO, SW, SYSTEMS engineering to design, deploy and maintain AI based critical system

Norms pillar
Norm, standard and regulation environment toward certification

Applications Evaluation Pillar
Ensure the right operational exploitation

Towards global strategy with coordinated programs and funding (Private, Public)
Confiance.ai program
(Global budget: 45M€, Duration: 4 years)
Program architecture

Data and knowledge engineering for Trust

Trust by design of AI component

Characterization, verification and validation of AI components

Trustworthy AI for embedded systems

Reference environment, tools and use cases

Open / Interoperable / Maintained
An incremental roadmap validated by various use-cases

Use case ex.
- Maintenance
- Perception
- Quality control

Use-case ex.
- Forecasting
- Optimization
- Autonomy

Time series data, images & video

Data driven AI
- Low criticality

Data driven AI & Knowledge based AI
- Medium criticality

Overall AI including hybrid AI
- High criticality
Scientific challenges (overview)

- Trustworthy system engineering with AI components
 - Qualify AI-based components and systems
 - Building AI components with controlled trust
 - Embeddability of trustworthy AI
- Trust and learning data
 - Qualify data/knowledge for learning
 - Building data/knowledge to increase confidence in learning
- Trust and human interaction
 - Trust-generating interaction between users and AI-based system
 - Trust-generating interaction between designer/certifiers and AI-based systems
2 examples of use cases

- Renault: welding defaults detection
- Valeo: urban scene interpretation
Confiance.ai Ecosystem
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:25</td>
<td>Can we measure trust? Agnès Delaborde (LNE, Laboratoire National de Métrologie et d’Essais)</td>
<td></td>
</tr>
<tr>
<td>10:40</td>
<td>Justifying trust in AI/ML system using Engineering Models and Assurance Cases, Eric Jenn (IRT Saint-Exupéry), Morayo Adedjouma (CEA List)</td>
<td></td>
</tr>
<tr>
<td>10:55</td>
<td>How to trust your data: challenges to increase confidence in the data lifecycle of critical systems, Flora Dellinger (Valeo), Camille Dupont (CEA), Xavier Perrotton (Valeo)</td>
<td></td>
</tr>
<tr>
<td>11:05</td>
<td>Questions</td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>Building labelled datasets for real-world tasks with active learning, Thomas Dalgaty (CEA), Fritz Poka Toukam (CEA), Oriane Simeoni (Valeo), Spyros Gidaris (Valeo), Hedi Ben-Younes (Valeo), Nicolas Granger (CEA), Camille Dupont (CEA)</td>
<td></td>
</tr>
<tr>
<td>11:25</td>
<td>An information geometry approach to Randomised smoothing, Hatem Hajri (IRT SystemX), Pol Labarbarie (IRT SystemX)</td>
<td></td>
</tr>
<tr>
<td>11:35</td>
<td>Uncertainty Quantification for Customers Demand Forecasting, Marc Nabhan (Air Liquide)</td>
<td></td>
</tr>
</tbody>
</table>