Privacy Friendly Energy Consumption Prediction: Real Use-Case Scenario

Mustafa A. Mustafa, James Nightingale (UoM)
Yingjie (Tony) Wang, Fairouz Zobiri, Mariana B. da Gama (KUL)

February 28, 2022
Energy use-case

UoM start-up who runs a unique energy market place just for renewables

Peer-to-peer energy exchange system that allows
 • households (Buyers) to place an order for electricity
 • generators (Sellers) to meet that order

The order submission and matching happen in advance of electricity delivery. Hence,
 • households (Buyers) need to predict their el. consumption
 • generators (Sellers) need to predict their available supply
Electricity consumption prediction

Aim of the AI/ML model

- predict the half-hourly (HH) electricity consumption of a household

Private input data:

- Previous HH data: most crucial data
- Number of occupants
- Type of house

Publicly available data

- Weather forecast/conditions
- Major events (football games, TV programs, lockdown)

…
Privacy concerns

Example daily load profile of a household

From load (electricity consumption) profile of a household, one can deduct information such as:

- Number of people
- Habits
- Activities
- Medical conditions
- Religion

Our aim: design an AI/ML model that is privacy-friendly
Federated learning

Federated Learning Workflows

1. Distribute Global Model
2. Train with Local Data
3. Send Local Models to Server
4. Aggregate Local Models

Repeat Until Training Complete

Key
- Aggregation Server
- Training Node
- Model Aggregation
- Weight/Gradient Exchange

FL - Aggregation Server
Use-case evaluation

We use real HH data

Smart Metering Electricity Customer Behaviour Trials that took place during 2009 and 2010 with over 5,000 Irish homes and businesses participating.

https://www.ucd.ie/issda/data/commissionforenergyregulationcer/

Data format

• Meter ID
• Type of premises = residential, SME
• Five digit code: Day & Time codes
• Electricity consumed during 30 minute interval (in kWh)

We developed and tested four ML models:

• Deep Neural Network (DNN)
• Long Short-Term Memory (LSTM)
• Convolutional Neural Network (CNN)
• WaveNet

We implemented and compared the four ML models in a centralised and FL framework using TensorFlow.

We evaluated them in terms of:

• Accuracy
• Scalability
• Robustness
Evaluation: accuracy

Table I Average MSE and training time

<table>
<thead>
<tr>
<th>Model</th>
<th>Average MSE</th>
<th>Training time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>centralized</td>
<td>federated</td>
</tr>
<tr>
<td>DNN</td>
<td>0.007112</td>
<td>0.009125</td>
</tr>
<tr>
<td>CNN</td>
<td>0.006541</td>
<td>0.008727</td>
</tr>
<tr>
<td>LSTM</td>
<td>0.006807</td>
<td>0.007909</td>
</tr>
<tr>
<td>WaveNet</td>
<td>0.007250</td>
<td>0.007566</td>
</tr>
</tbody>
</table>
Evaluation: scalability

• Form an energy community with member households training collaboratively the ML models
• A community with 8-10 households already generate ML models with good-enough accuracy
• Outsiders of the community could also benefit from the ML models trained by the community
Evaluation: robustness

- 25% of the data used in the training phase is lost (set to zero)
- For each client, the lost data entry is selected randomly
Privacy analysis

• With federated learning, no client raw data leave the client-side \textcolor{red}{Good!}
• Only individual client gradients’ are shared with the central server \textcolor{red}{Good!}
• Gradients themselves can leak information about the raw data \textcolor{red}{Not so good!}
• There is too much trust placed on the central server \textcolor{red}{Not so good!}

We need to protect the gradients too
Conclusions

Take away from our experiments
• Compared to Centralised ML, FL achieves comparable accuracy with improved scalability and robustness
• Pure FL is not sufficient to protect clients’ sensitive data

Next steps
• Deploy secure computation techniques (HE and MPC) to protect clients’ gradients
• Perform analyses on a larger group of clients (1k+)
• Deploy clustering algorithms on gradients to improve accuracy
• Explore the trade-offs between privacy protection and explainability & verifiability
We are hiring!

Research Associate (Postdoc) in Secure & Privacy-Preserving AI Models

- Application deadline: 8 March 2022
- More info: https://www.jobs.manchester.ac.uk/displayjob.aspx?jobid=21631
- Contact: mustafa.mustafa@manchester.ac.uk