Requirements Assurance in Machine Learning (ML) Applications

Dr Alec Banks and Rob Ashmore

SafeAI 2019
Disclaimer

The contents of this presentation should not be interpreted as representing the views of the MOD, nor should it be assumed that they reflect any current or future MOD policy. The information contained in this presentation cannot supersede any statutory or contractual requirements or liabilities and is offered without prejudice or commitment.
There are commonly agreed methods for providing assurance of Autonomous System behaviour

There is a robust body of evidence to help address Legal, Regulatory, and Certificatory issues

There is a robust body of evidence to support Policy & Trust decisions

Compelling Safety Arguments can be provided for Autonomous Systems (including those using Artificial Intelligence)
Starting Out, The "4+1" Principles[1]

P1: Software safety requirements shall be defined to address the software contribution to system hazards.

P2: The intent of the software safety requirements shall be maintained throughout requirements decomposition.

P3: Software safety requirements shall be satisfied.

P4: Hazardous behaviour of the software shall be identified and mitigated.

P4+1: The confidence established in addressing the software safety principles shall be commensurate to the contribution of the software to system risk.

Define system-level requirements

Refine into something you can code against

Code what you intended - verification

Look for new system-level hazards

Target resources at highest risks

P1 - Principle 1 (and so on)

ML Challenges the "4+1" Principles[1], [2]

P1: Software safety requirements shall be defined to address the software contribution to system hazards.

Define system-level requirements

OK

P2: The intent of the software safety requirements shall be maintained throughout requirements decomposition.

Refine into something you can code against

?

P3: Software safety requirements shall be satisfied.

Code what you intended - verification

?

P4: Hazardous behaviour of the software shall be identified and mitigated.

Look for new system-level hazards

OK (ish)

P4+1: The confidence established in addressing the software safety principles shall be commensurate to the contribution of the software to system risk.

Target resources at highest risks

OK (ish)

Requirements Refinement

- Traditional Systems
- ML Systems
Existing Considerations for Requirements Assurance

Using RTCA DO-178C3 as an example, requirements should be:

- R1. Compliant with High Level Requirements
- R2. Accurate and consistent
- R3. Compatible with target computer
- R4. Verifiable
- R5. Conforming to standards
- R6. Traceable
- R7. Algorithmically correct

THESE WILL STILL APPLY! For example to the training algorithm
Considerations for the Assurance of ML Training Data

Training Data abstractly forms a significant component of Low Level Requirements. We propose that it should:

- D1. Relate to the intent of the HLR (R2 and R7)
- D2. Not contain bias (R7)
- D3. Be sufficient (R1)
- D4. Be syntactically and semantically correct (R2 and R7)
- D5. Address normal and robustness behaviours (R1)
- D6. Be self-consistent (R2)
- D7. Conform to Standards (R5)
- D8. Be compatible with the target computer (R3)
- D9. Be verifiable (R4)
The Indicative Example

• Each of the training data assurance considerations are ‘coloured’ using an unmanned air vehicle landing system as an indicative fictional example.

• We believe that the approach is domain agnostic.

• Finally, the workshop may be interested to note that the Safety of Autonomous Systems Working Group (SASWG) are publishing algorithmic-level framework guidance for autonomous system safety[4].
References

