Quantifying Misalignment Between Agents

SafeAI 2022 workshop @ AAAI, Montreal/Virtual

Aidan Kierans¹, Hananel Hazan², Shiri Dori-Hacohen³

Before we start - Quick Plug

- The National Science Foundation has put out a Request for Information (RFI) for the 2023
 Convergence Accelerator - due today 2/28/22
- We are coordinating a response focusing on a theme of AI Safety - could lead to >\$9M funding
- Please consider joining! Just 5 min of your time
- Go to https://bit.ly/NSF-RFI-SafeAI!

Gaps in Prior Work

- Previous work has mostly been qualitative in its description of the alignment problem
- ... and/or attempted to align AI actions with human interests by focusing on value specification and learning
- We still lack a systematic understanding of how misalignment should be defined and measured

Unexplained Phenomenon #1

Social Media disinformation bots that are:

- aligned with their creators (e.g. the IRA; see Mueller, 2019)
- acting against the interests of those interacting with them, and of other governments

Aligned w/Russian propaganda efforts

Misaligned w/social media users, US + Ukraine governments, etc.

Unexplained Phenomenon #2

Shopping app with recommender systems:

Aligned with their creators (Amazon, Target, etc.)

Variably
Aligned
OR
Misaligned
with
their
users

Drawing on model of contention

- Jang, Dori-Hacohen & Allan (2017) offers a mathematical model of contention among populations (of humans)
- The paper addresses the question of controversial to whom?
- This model offers a promising avenue with regards to misalignment

Contention by populations (schematic)

Extremely high contention among voters overall

Turnout matters as well (72%, i.e. 28% agnostic)

Contention by populations (schematic)

Contention varies widely at regional level

Brexit contention (UK voters)

Outlier: 0.15

- We want to extend this model
- From contentious topics among populations of people...
- ... to (mis)alignment among agents, including both human and AI
 - Why mis-?
 - Most comparable to contention

Jang, Dori-Hacohen & Allan (2017)

Jang, Dori-Hacohen & Allan (2017)

Jang, Dori-Hacohen & Allan (2017)

Jang, Dori-Hacohen & Allan (2017) Kierans, Hazan & Dori-Hacohen (in progress)

Symbol	Definition	Symbol	Definition
Ω	a population	Ω	a population
p	a person	ia	an individual agent (human or AI)
T	a topic	PA	a problem area
s	a stance w.r.t. topic T	$\mid g \mid$	a goal w.r.t. problem area PA

Population-based misalignment

Population-based contention...

$$P(c|\Omega,T) = P(p_1, p_2 \text{ selected randomly from } \Omega, \exists s_i, s_j \in S,$$

s.t. $holds(p_1, s_i, T) \land holds(p_2, s_j, T)) \cdot P(conflict|s_i, s_j)$

- ... becomes population-based misalignment:
 - If we randomly select two **agents** from Ω , how likely are they to hold conflicting **goals**?

```
P(ma|\Omega, PA) = P(ia_1, ia_2 \text{ selected randomly from } \Omega,

\exists g_i, g_j \in G, \text{ s.t. } holds(ia_1, g_i, PA) \land holds(ia_2, g_j, PA)) \cdot P(conflict|g_i, g_j)
```


Deriving Contention

• ... two constraints and several math steps later...

Full derivation leads to:

$$P(ma|\Omega, PA) = \frac{\sum_{i \in \{2..k\}} \sum_{j \in \{1..i-1\}} (2|\mathfrak{G}_i||\mathfrak{G}_j|)}{|\Omega|^2}$$

Circling back to the Unexplained Phenomena

Social Media disinformation bots

We can now understand these bots as having varying alignment depending on the population being observed

Aligned w/Russian propaganda efforts

Misaligned w/social media users, US + Ukraine governments, etc.

Aligned and misaligned: social media bots

Extremely aligned with each other, with Russian government / IRA operatives

Aligned and misaligned: social media bots

Extremely aligned with each other, with Russian government / IRA operatives

Extremely misaligned with US, Ukraine users + governments

Aligned and misaligned: social media bots

Extremely aligned with each other, with Russian government / IRA operatives

Extremely misaligned with US, Ukraine users + governments (with some notable exceptions)

Aligned and misaligned: social media bots

Overall high misalignment among the population of earth (both human and bot)

Shopping app with recommender systems:

Customer goal: convenience at a low price

Aligned

Target's goal: make money

Customer goal: convenience at a low price

Aligned

Target's goal: make money

Misaligned: purchase

- don't waste money impulse shopping
- don't fill house with junk before moving

5" x 5" Metal/Marble Box wi

Customer goal: convenience at a low price

Target's goal: make money

Customer goal(s):

- don't waste money impulse shopping
- don't fill house with junk before moving

5" x 5" Metal/Marble Box wi

Target's goal: make money

would predict the refunds, too, and not recommend these items in the first place!

Customer goal(s):

- don't waste money impulse shopping
- don't fill house with junk before moving

In Summary

- Extending the population contention model (Jang et al., 2017) to the AI Safety problem
- Proposed a first quantitative model of misalignment
 - Rather than binary
- Mathematically modeling misalignment among populations of agents
 - Human or otherwise

So What?

- Model carries greater explanatory power
- Solving the Alignment Problem requires understanding what it is, how to quantify it, and how it can manifest
- Humans are frequently not aligned with each other, so aligning AI to groups of humans or to humanity a whole is a non-trivial goal

Thank you!

Questions?

ShirKi
https://linkedin.com/in/shiri
shiridh@uconn.edu

Reminder: Help AI Safety get more funding

Just 5 min - due TODAY!

https://bit.ly/NSF-RFI-SafeAI

Motivating Question

- In Critch and Krueger's discussion of misalignment, they mention "...the difficulty of defining alignment with a multi-stakeholder system such as humanity"
- They ask: "where might one draw the threshold between 'not very well aligned' and 'misaligned' [...]?" (Critch and Krueger 2020, pg. 14)
- This paper focuses on both of these challenges: first, defining alignment across multiple agents; and second, quantifying misalignment mathematically

Unexplained Phenomenon #2

Imagine an adversary who exploits a customer service chatbot AI (e.g. gets it to refund too much money)

Misaligned with the creator (Amazon, Target, etc.)

Aligned with the user(s)

Goal groups

Let a **goal group** in the population be a group of agents that hold the same goal: for $i \in \{0..q\}$, let $\mathfrak{G}_i = \{ia \in \Omega | holds(ia, g_i, PA)\}$. By construction, $\Omega = \bigcup_i \mathfrak{G}_i$.

This leads to:

$$P(ma|\Omega, PA) = P(ia_1, ia_2 \text{ selected randomly from } \Omega,$$

 $\exists g_i, g_j \in G, \text{ s.t. } ia_1 \in \mathfrak{G}_i \land$
 $ia_2 \in \mathfrak{G}_j) \cdot P(conflict|\mathfrak{G}_i, \mathfrak{G}_j).$

From population to subpopulation

Finally, we extend this definition to any sub-population of Ω . Let $\omega \subseteq \Omega, \omega \neq \emptyset$ be any non-empty sub-group of the population. Let $g_i = G_i \cap \omega$. Thus, by construction, $g_i \subseteq G_i$ and $\omega = \bigcup_i g_i$. The same model applies respectively to the sub-population. In other words, for any $\omega \subseteq \Omega$,

$$P(c|\omega,T) = P(p_1, p_2 \text{ selected randomly from } \omega$$

 $\land \exists i \text{ s.t. } p_1 \in g_i \land p_2 \in g_j) \cdot P(conflict|g_i, g_j).$

Two additional constraints

We now consider a special case of this model with two additional constraints. Let every person have only one stance on a topic:

And, let every explicit stance conflict with every other explicit stance:

$$P(conflicts|(s_i, s_j) = 1 \iff (i \neq j \land i \neq 0 \land j \neq 0)$$

This implies that $G_i \cap G_j = \emptyset$. Crucially, we set a lack of a stance to not be in conflict with any explicit stance. Thus, $O_i = \Omega \setminus G_i \setminus G_0$.

Deriving Contention

Full derivation leads to:

$$P(c|\Omega,T) = \frac{\sum_{i \in \{2..k\}} \sum_{j \in \{1..i-1\}} (2|G_i||G_j|)}{|\Omega|^2}$$

Trivially, $P(C|\omega, T)$ is maximal when $|g_0| = 0$ and $|g_1| = \dots = |g_k| = \frac{|\omega|}{k}$, and its value is $\frac{k-1}{k}$. This is subtly different from entropy due to the existence of s_0 , as entropy would be maximal when $|g_0| = |g_1| = \dots = |g_k| = \frac{|\omega|}{k-1}$.

Normalize by $\frac{k-1}{k}$ to get [0,1] range for any # stances

Misalignment: Open Questions

Q1. Can we distinguish between implicitly misaligned (but theoretically compatible) goals/agents vs. mutually incompatible goals/agents?

Misalignment: Open Questions

Q2. Can we draw on the literature from information disorders with regards to mis-, dis- and malinformation? What would mis-dis- and malalignment look like?

Future Work

- Applying the model to real datasets
 - Whether real or simulated
 - Human-only, AI-only or mixed
- Incorporating multiple dimensions a la the controversy model
 - o e.g. importance, time, ...

