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 Aim: Ensure safer exploration In autonomous driving policies, reduce
anomalies In data

 Assumption: Bad demonstration samples affect safety; Full self-
exploration by system Is also infeasible

 Hypothesis: Human contextual knowledge can help In facilitating safer
exploration

 Methodology: Unsupervised anomaly detection, human-in-the-loop,
reinforcement learning

*Premise: Infeasible to start training afresh due to large training time,

unsafe exploration
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* Prior historical data or human demonstrations used as a starting point

Non-exploratory training phase: Data from the data store Is used to train the anomaly predictor and

policy learning modules
» Can use human-in-the-loop to classify outliers as correct or erroneous

» Correct samples can directly be used for policy training
* Erroneous samples can be used to predict future anomalies/faults by combining with model of

environment dynamics

Exploratory training phase: System interacts with the environment but chooses actions based on

predicted anomaly score
 Faclilitates safe exploration by taking previous human feedback Iinto consideration

Evaluation criteria: Data quality and guantity, safety, performance, user trust
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