

Human-in-the-loop Learning for Safe Exploration through Anomaly Prediction and Intervention

Prajit Thazhurazhikath Rajendran, Huascar Espinoza, Chokri Mraidha (CEA, DILS-LSEA), Agnes Delaborde (LNE)

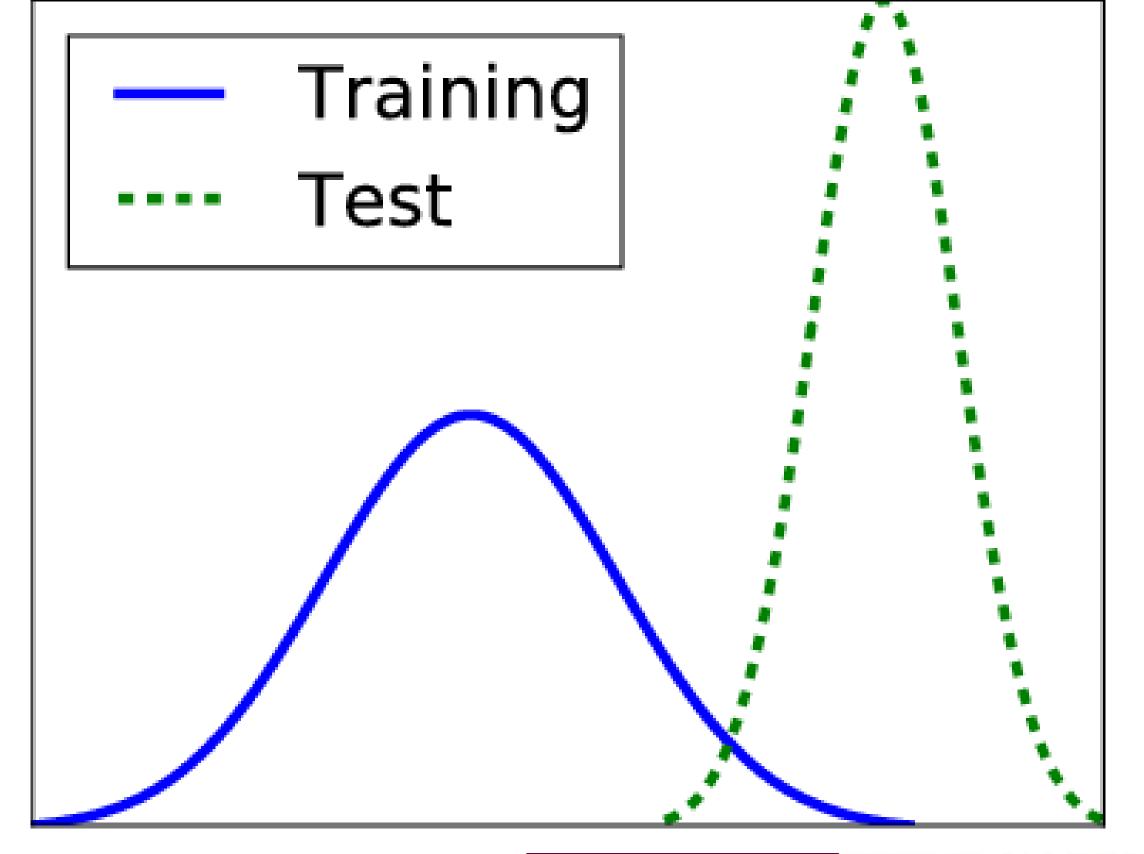
SafeAI, AAAI 2022, 1 March 2022

INTRODUCTION

- Aim: Ensure safer exploration in autonomous driving policies, reduce anomalies in data
- **Assumption:** Bad demonstration samples affect safety; Full selfexploration by system is also infeasible
- Hypothesis: Human contextual knowledge can help in facilitating safer exploration
- Methodology: Unsupervised anomaly detection, human-in-the-loop, reinforcement learning
- Premise: Infeasible to start training afresh due to large training time, unsafe exploration

Training images collected in Sunny California

Out of domain images collected in Massachusetts



PROPOSED METHOD

Prior historical data or human demonstrations used as a starting point

Non-exploratory training phase: Data from the data store is used to train the anomaly predictor and policy learning modules

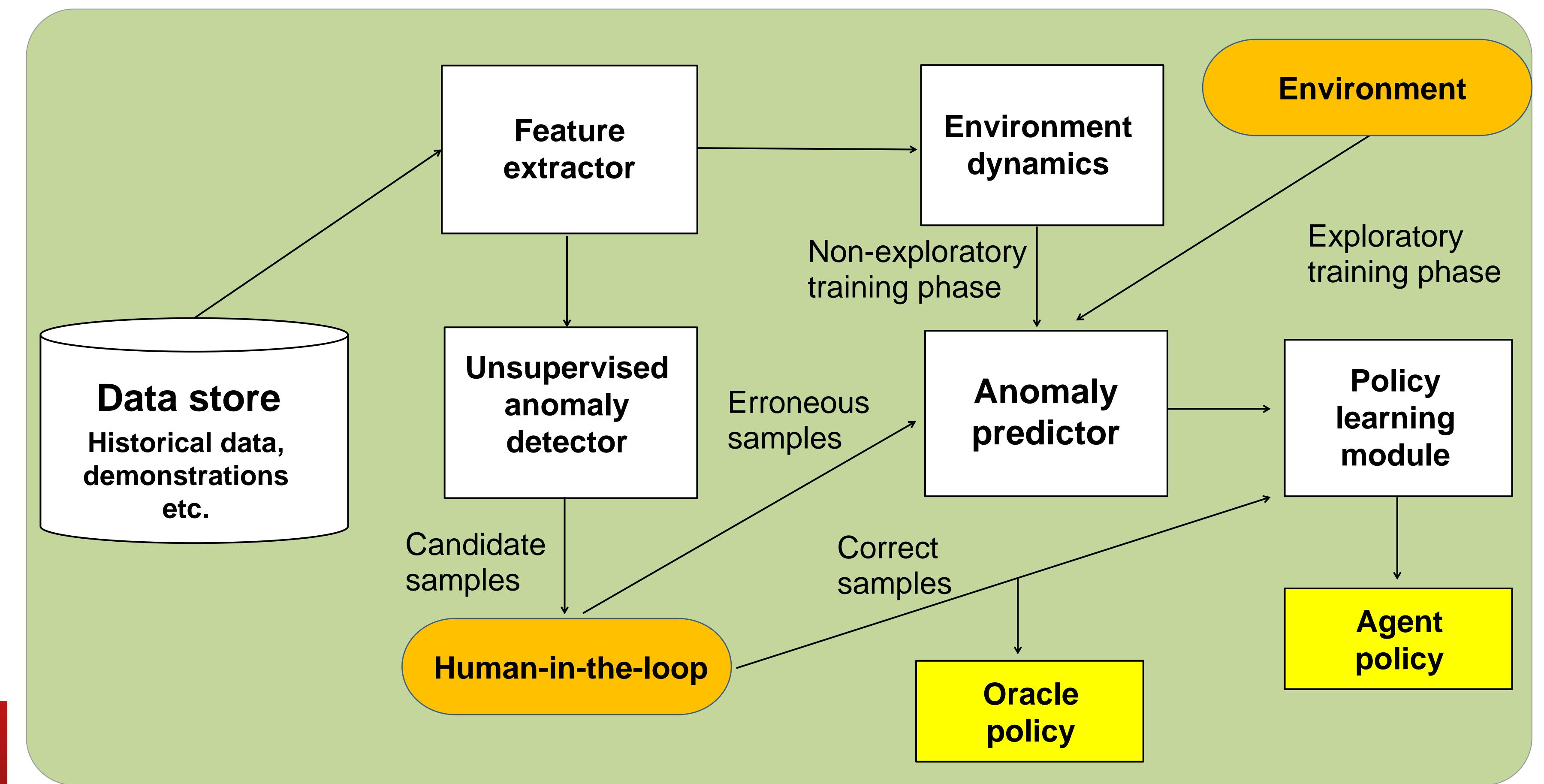
- Can use human-in-the-loop to classify outliers as correct or erroneous
- Correct samples can directly be used for policy training
- Erroneous samples can be used to predict future anomalies/faults by combining with model of environment dynamics

Exploratory training phase: System interacts with the environment but chooses actions based on predicted anomaly score

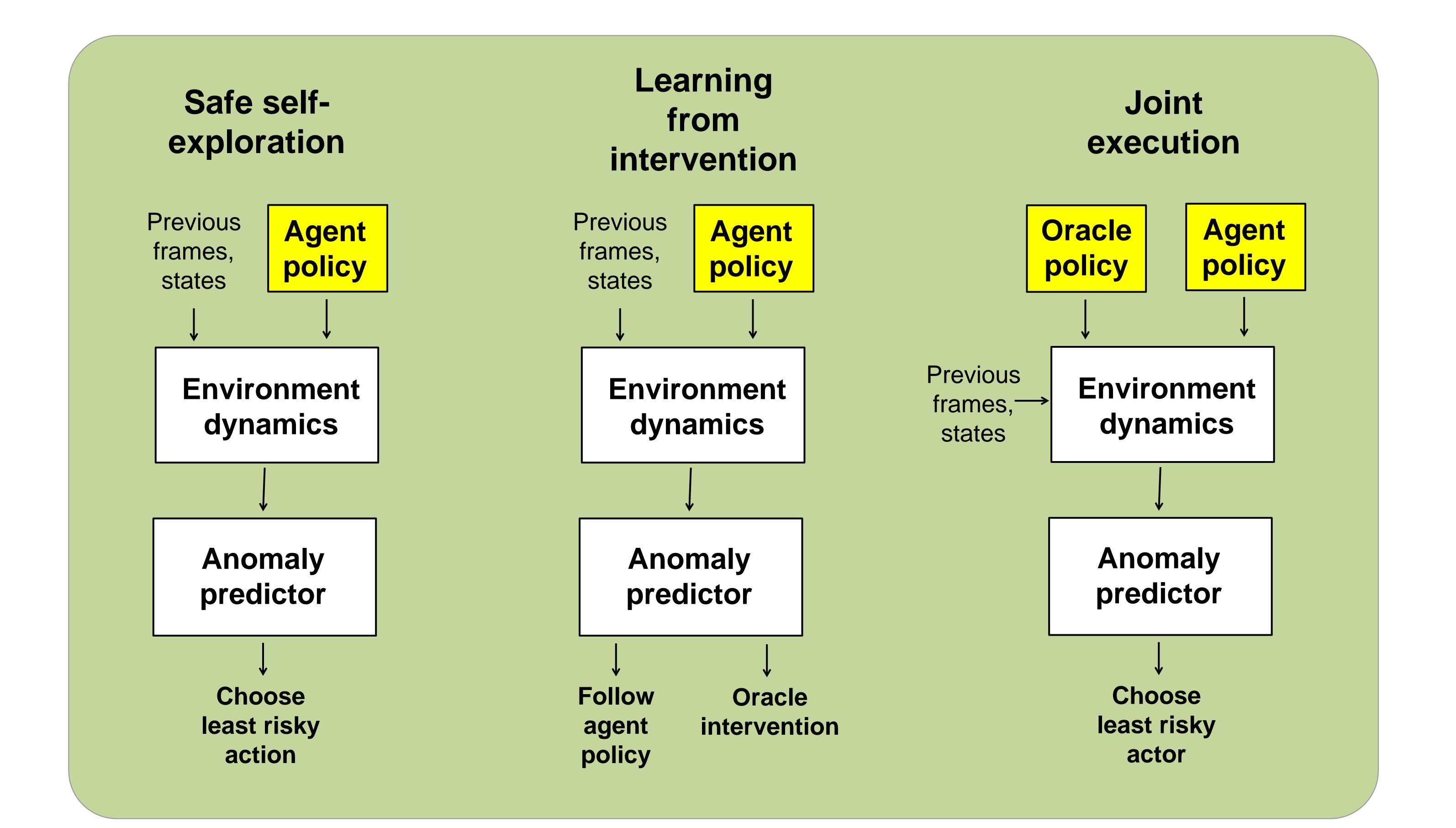
• Facilitates safe exploration by taking previous human feedback into consideration

Evaluation criteria: Data quality and quantity, safety, performance, user trust

BLOCK DIAGRAM



VARIANTS



THANK YOU