SAFEAI- 2022

IS IT ALL A CLUSTER GAME? - EXPLORING OUT-OF-DISTRIBUTION DETECTION BASED ON CLUSTERING IN THE EMBEDDING SPACE

POULAMI SINHAMAHAPATRA, RAJAT KONER, KARSTEN ROSCHER, STEPHAN GÜNNEMANN

1 | 01.03.2022

MOTIVATION

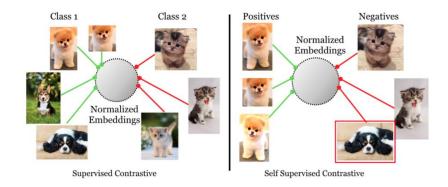
- Exploring Out-of-Distribution (OOD) detection problem
 - Embeddings of similar semantic data should cluster together in embedding space
 - Can we learn to distinguish In-Distribution (ID) from OOD samples based on clusters ?

KEY IDEAS

- Using Contrastive Learning (CL) methods
 - cluster similar instances/ classes together
 - push apart dissimilar instances/ classes

KEY IDEAS

- Using Contrastive Learning (CL) methods
 - cluster similar instances/ classes together
 - push apart dissimilar instances/ classes



Source: Khosla et. Al: "Supervised Contrastive Learning"

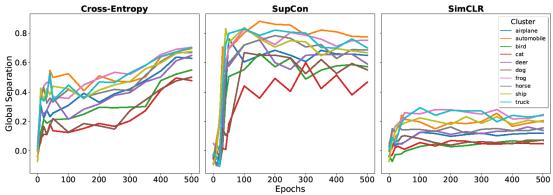
- CL methods used in this work:
 - Supervised Contrastive Learning (SupCon)
 - Self-supervised Contrastive Learning (SimCLR)
- Baseline:
 - Cross-Entropy (CE)

KEY IDEAS/ CONTRIBUTIONS

- Using Contrastive Learning (CL)
 - cluster similar instances/ classes
 - push apart dissimilar instances/ classes
- Analysing cluster formation in embedding space
 - Global Separation
 - Cluster Purity

KEY IDEAS/ CONTRIBUTIONS

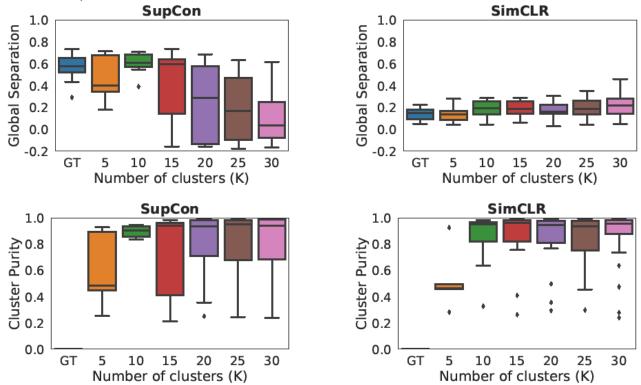
- Using Contrastive Learning (CL)
 - cluster similar instances/ classes
 - push apart dissimilar instances/ classes
- Analysing cluster formation in embedding space
 - Global Separation
 - Cluster Purity



Evolution of cluster separation over time for supervised and self-supervised methods

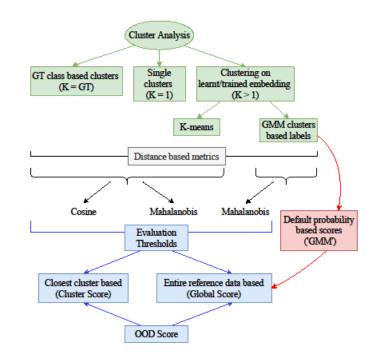
RESULTS: DETERMINING CLUSTER QUALITY

 Comparison of cluster quality for SupCon and SimCLR based on Global Separation and Cluster Purity for GT classes as well as K-means based cluster



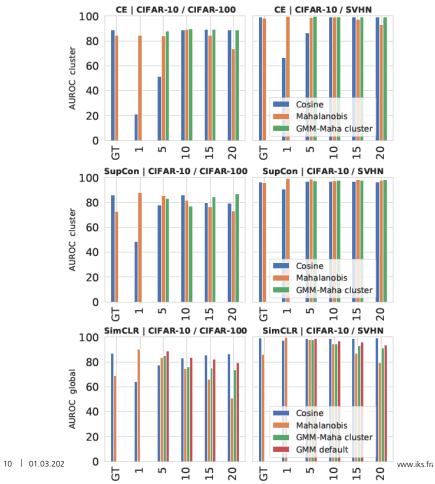
- Using Contrastive Learning (CL)
 - cluster similar instances/ classes
 - push apart dissimilar instances/ classes
- Analysing cluster formation in embedding space
 - Global Separation
 - Cluster Purity
- Using distance-based metrics to perform OOD detection
 - Metrics: Mahalanobis and Cosine Similarity
 - AUROC as OOD evaluation scores
 - Cluster-based (K-means/GMM) and Global scores

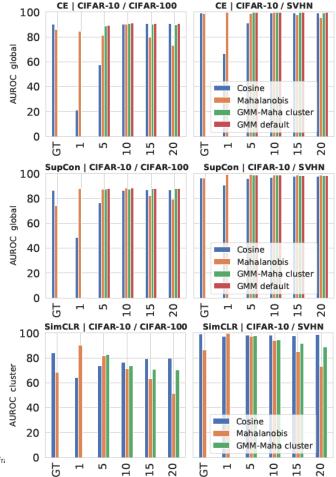
- Using Contrastive Learning (CL)
 - Cluster similar instances/ classes
 - Push apart dissimilar instances/ classes
- Analysing cluster formation in embedding space
 - Global Separation
 - Cluster Purity
- Using distance-based metrics to perform OOD detection
 - Metrics: Mahalanobis and Cosine Similarity
 - AUROC as OOD evaluation scores
 - Cluster-based (K-means/GMM) and Global scores



Schematic of our OOD evaluation pipeline

RESULTS: OOD DETECTION





Fraunhofer

- Depending on supervised or self-supervised training distinct or overlapping clusters of embeddings exist
- Simple less expensive methods like CE provide competitive results
- Across all the different trends investigated, there's no clear winner yet and needs to be further explored

