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MOTIVATION

⎯ Exploring Out-of-Distribution (OOD) detection problem

⎯ Embeddings of similar semantic data should cluster together in embedding space

⎯ Can we learn to distinguish In-Distribution (ID) from OOD samples based on clusters ? 
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KEY IDEAS

⎯ Using Contrastive Learning (CL) methods

⎯ cluster similar instances/ classes together

⎯ push apart dissimilar instances/ classes
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KEY IDEAS

⎯ Using Contrastive Learning (CL) methods

⎯ cluster similar instances/ classes together

⎯ push apart dissimilar instances/ classes

Source: Khosla et. Al:“Supervised Contrastive Learning“

⎯ CL methods used in this work:

⎯ Supervised Contrastive Learning (SupCon)

⎯ Self-supervised Contrastive Learning (SimCLR)

⎯ Baseline:

⎯ Cross-Entropy (CE)
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KEY IDEAS/ CONTRIBUTIONS

⎯ Using Contrastive Learning (CL) 

⎯ cluster similar instances/ classes

⎯ push apart dissimilar instances/ classes

⎯ Analysing cluster formation in embedding

space

⎯ Global Separation

⎯ Cluster Purity
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Evolution of cluster separation over time for supervised and self-supervised methods
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⎯ Comparison of cluster quality for SupCon and SimCLR based on Global Separation and 

Cluster Purity for GT classes as well as K-means based cluster

RESULTS: DETERMINING CLUSTER QUALITY



www.iks.fraunhofer.de01.03.20228

KEY IDEAS/ CONTRIBUTIONS

⎯ Using Contrastive Learning (CL) 

⎯ cluster similar instances/ classes

⎯ push apart dissimilar instances/ classes

⎯ Analysing cluster formation in embedding space

⎯ Global Separation

⎯ Cluster Purity

⎯ Using distance-based metrics to perform OOD 

detection

⎯ Metrics: Mahalanobis and Cosine Similarity

⎯ AUROC as OOD evaluation scores

⎯ Cluster-based (K-means/GMM) and Global 

scores
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⎯ Using distance-based metrics to perform OOD 

detection

⎯ Metrics: Mahalanobis and Cosine Similarity

⎯ AUROC as OOD evaluation scores

⎯ Cluster-based (K-means/GMM) and Global 

scores Schematic of our OOD evaluation pipeline
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RESULTS: OOD DETECTION
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⎯ Depending on supervised or self-supervised training distinct or overlapping clusters of embeddings

exist

⎯ Simple less expensive methods like CE provide competitive results

⎯ Across all the different trends investigated, there‘s no clear winner yet and needs to be further

explored

CONCLUSION AND FUTURE WORK


