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The scenario: ownership verification of DNN models ..
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The background:

To protect deep neural networks as intellectual properties, watermarking
schemes have been widely adopted.

M clean

& | ) M watermarked

b

/Y\J%:Sﬂdﬁ i




Ov» mer

* key

M-
x"m”

@ al-2

@. key’

(a) Security against the ambiguity attack.

M’ is my product!
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(b) Robustnenss against tuning.
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(c) Redeclaration attack.
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Targets: unambiguity, robustness, flexibility, etc. -
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Scheme Type Unambiguity Fl::;ggl;:?::;y a;(i)ll:;ltszzﬁlslg Flexibility

(Uchida et al. 2017) White-box X v X v
(Darvish, Chen, and Koushanfar 2019) | White-box v v v X
(Li et al. 2019a) Black-box v v v X
(Zhu et al. 2020) Black-box v v v X
(Guan et al. 2020) White-box v v X X
(Le Merrer, Perez, and Trédan 2020) Black-box X v v v
(Ong et al. 2021) Black-box X v v X
(Fan et al. 2021) Black-box v v v X
(Liu, Weng, and Zhu 2021) White-box X v v X
Ours. White-box v v v v
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MTLSIign: Model watermark as an extra task.

- The primary branch

A
e N
t

Predictions for
he primary task.
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Predictions for
the watermarking task.
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The watermark branch.
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Sentimental
labels.
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Training sentences.

Watermarking sentences.
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Unambiguity (provable ownership proof).

Robustness & functionality-preserving (by using extra
regularizers during MTL).

Flexibility (can be applied to various network architectures/tasks).
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Experiments
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Experiments
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Thank you for

listening!




