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Reinforcement Learning (RL)
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Classical RL objective: expectation maximization
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Good objective for the Arcade Learning Environment
(Bellemare et al., 2013)
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Unfit for a risky task like clinical treatment suggestion !
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Conditional-value-at-risk RL: a risk-sensitive objective
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Conditional-value-at-risk RL: a risk-sensitive objective
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Conditional-value-at-risk RL: a risk-sensitive objective

| 7% = argmax CVaR,|J(7)] !

All existing approaches require
distributional RL methods.




Game Structure
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Retrieving CVaR RL optimal policies

Max-min objective: INax min 4: [J T (7T, A.)]
m A
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The solution is the equilibrium point (71'*, A*), for which we have (Chow et
al., 2015):

7 = argmax CVaR 1 |J(7)]



Retrieving CVaR RL optimal policies

Max-min objective: INax min 4: [J T (7T, A)]
m A

The solution is the equilibrium point (71'*, A*), for which we have (Chow et
al., 2015):

m° = arg max CVaf@[J (7r)]

T



CARL: Game properties

The objective for both the agent and the adversary is to maximize their
expected rewards.



CARL: Game properties

The objective for both the agent and the adversary is to maximize their
expected rewards.

Risk tolerance is based on a single hyperparameter and is easy to interpret.



Stackelberg games for gradient updates

Updating each player naively is unstable due to the non-stationarity of games
(Fiez et al., 2019)



Stackelberg games for gradient updates

Updating each player naively is unstable due to the non-stationarity of games
(Fiez et al., 2019)

Stackelberg game: a leader (7) takes for granted that its follower(A )is optimal
with respect to itself.

T = arg max{E[J"(w, A)]st. A = argm?xE[J"(W, A)]}

A" = arg m?XE[J"(W, A)]



Practical Stackelberg-based algorithm

Algorithm 1: CVaR Adversarial Stackelberg Algorithm

Require: 7y (protagonist), A,, (antagonist), n (perturbation

budget), K, (number of intermediate antagonist steps)

1: Nupdates =0
2: while training not done do

X HEgdhrw

9:
10:
11:
12:
13:

Get 1nitial state s;
Nr =1 > Remaining antagonist budget
while s; not terminal do

Qg W@(St),Pt — P(Su at)

5t — Aw(Ptv 777')

7St p— Pt ,\O 5

St41 Ptﬂ“t+1 ~ R<3t—|—1)

N =5 (Z;l) > Update remaining budget
end while

Update 6 or w according to Nypdates and Kyp.
N, updates = <Vupdates T 1

14: end while




Risky Gridworld: experimental setting

Se—

5 % chance that the environment
executes a random action.

The agent’s degree of caution is
represented by its willingness to
move lower on the grid to distance
itself from the lava tiles.



Empirical results
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Increasing the adversary’s budget leads to an increasingly cautious agent.
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Empirical results
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Increasing the adversary’s budget leads to an increasingly cautious agent.

There appears to be instability issues in the training procedure.



Conclusion

We proposed a new risk-sensitive RL method for the CVaR risk measure which
does not require distributional RL algorithms.



Conclusion

We proposed a new risk-sensitive RL method for the CVaR risk measure which
does not require distributional RL algorithms.

We estimate that our proposal can serve as a building block because it paves
the way to incorporate results from the Game Theory litterature to
risk-sensitivity in RL.
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