Maximum Likelihood Uncertainty Estimation: Robustness to Outliers

Safe AI 2022 (The AAAI's Workshop on Artificial Intelligence Safety)

Deebul S. Nair^{1 3}, Nico Hochgeschwender^{1 2}, Miguel A. Olivares-Mendez³

1 Dept. of Computer Science, Bonn-Rhein-Sieg University of Applied Sciences, Germany. 2 German Aerospace Center (DLR), Institute for Software Technology, Germany. 3 SpaceR Research Group, University of Loxembourg, Loxembourg.

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Introduction

Uncertainty Estimation θ $f(\theta, x_i)$ y_i x_i σ^2 argmin $\mathcal{L}(f(\theta, x_i), \sigma^2, y_i)$ θ

Robustness to Label Outliers θ $f(\theta, x_i)$ y_i^{η} x_i σ^2 argmin $\mathcal{L}(f(\theta, x_i), \sigma^2, y_i^{\eta})$ θ

Robustness to Label Outliers

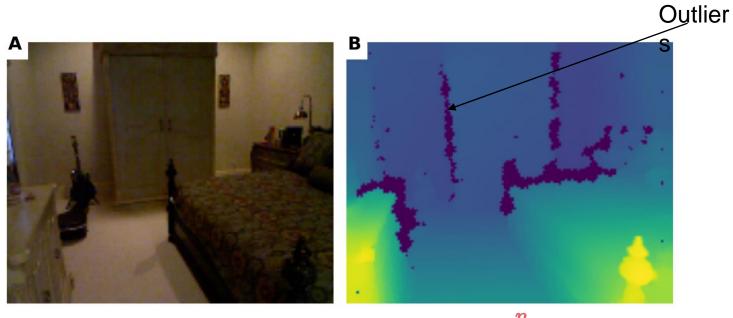
Robustness of uncertainty estimation in the presence of label outliers

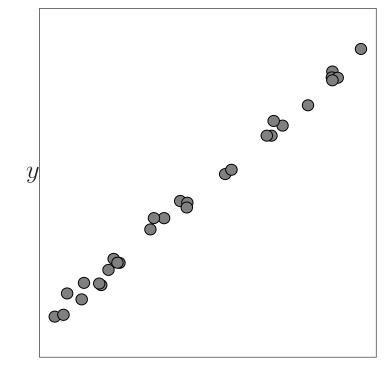
Contributions:

1. Current uncertatinty estimation methods are not robust to label outliers

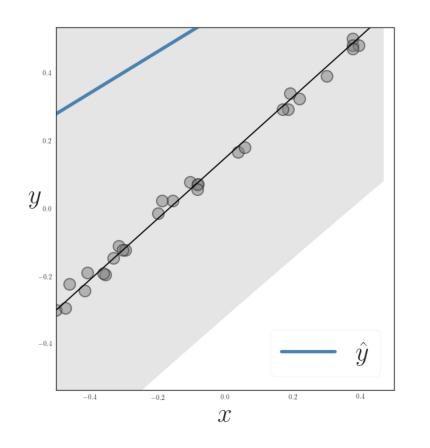
2. A robust loss function

Motivation: Monocular Depth Estimation





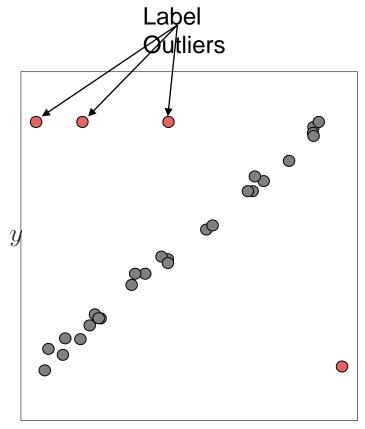
 \boldsymbol{x}



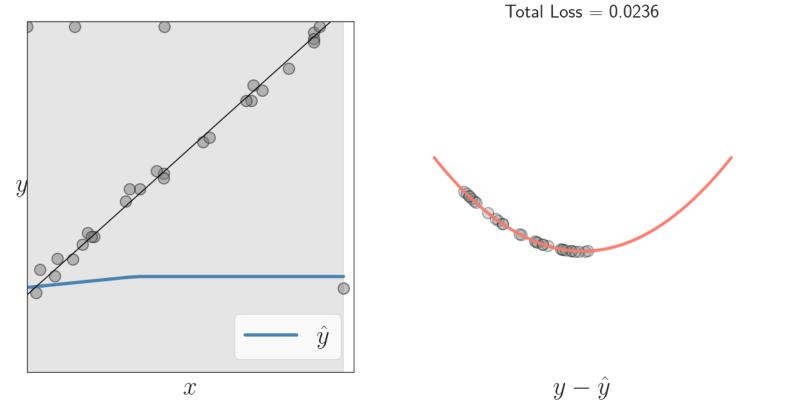
 $y - \hat{y}$

Nix et al, 1994

Uncertainty estimation : Gaussian NLL Loss



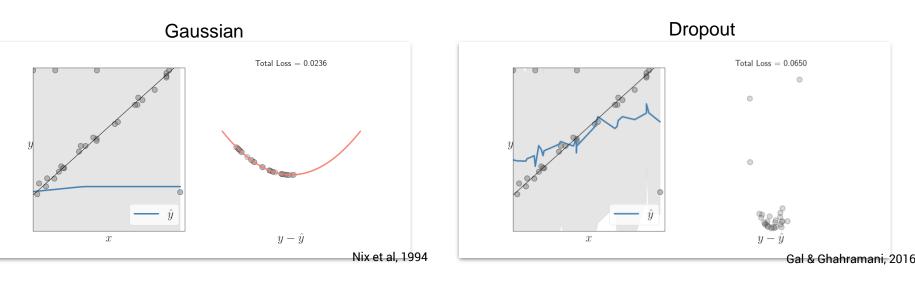
x

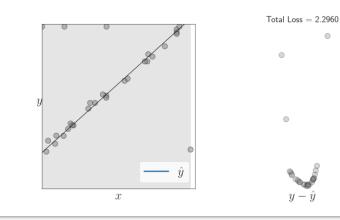


Nix et al, 1994

Uncertainty estimation : Gaussian NLL Loss

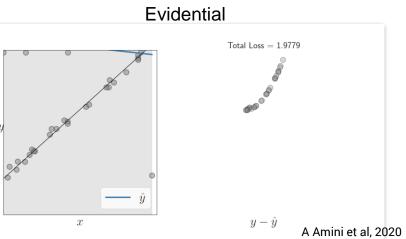
10





B Lakshminarayanan et al, 2017

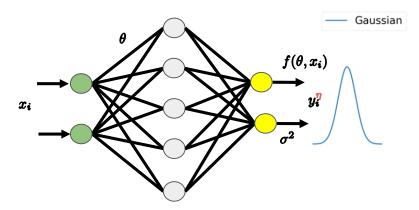
 \bigcirc

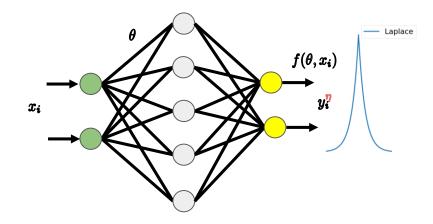


11

Proposed Approach

Heavy Tailed Distribution

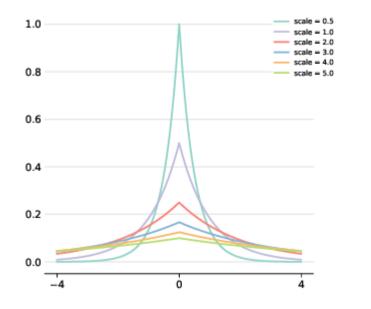


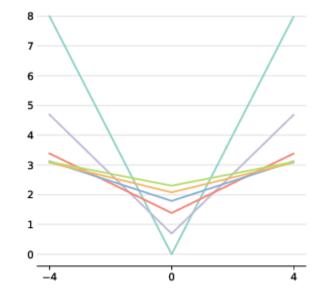


Gaussian NLL Loss

Laplace NLL Loss

Laplace Negative Log Likelihood





$$p(y|\mu, s) = \frac{1}{2s} \exp(-\frac{|y-\mu|}{s})$$

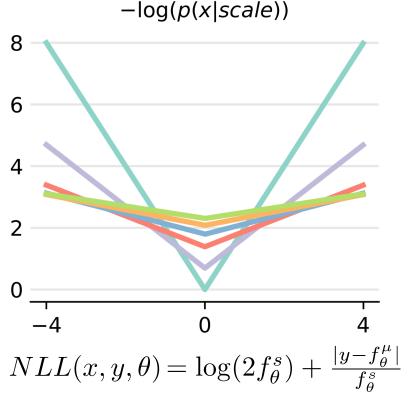
$$NLL(x, y, \theta) = \log(2f_{\theta}^{s}) + \frac{|y - f_{\theta}^{\mu}|}{f_{\theta}^{s}} \Big|_{14}$$

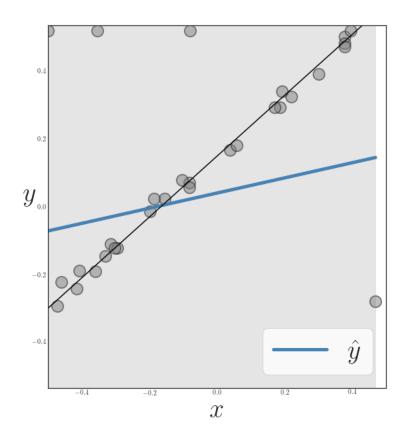
Laplace Negative Log Likelihood

Monotonic w.r.t inputs |x| and scale s (useful for graduated nonconvexity)

Smooth w.r.t. x and scale

Bounded first and second derivatives (no exploding gradients)

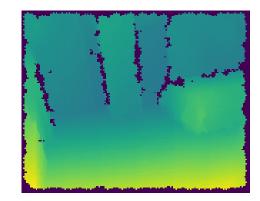


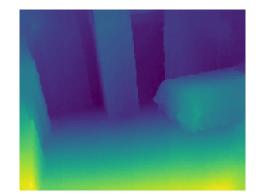


Results

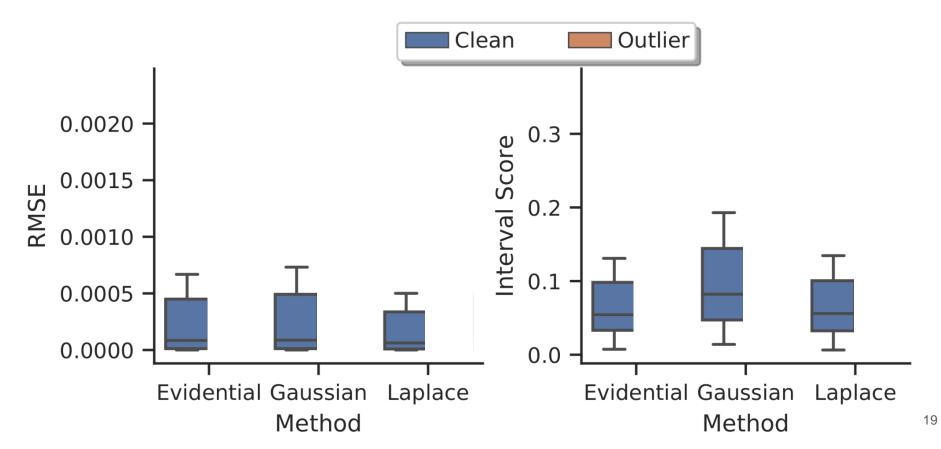
Monocular Depth Estimation

- NYU-Depth-v2-dataset
 - with outliers
 - cleaned dataset
- Architecture:
 - U-Net (Ronneberger, Fischer, and Brox 2015) with spatial dropout.
- Uncertainty Metrics :
 - Interval Score
 - Entropy

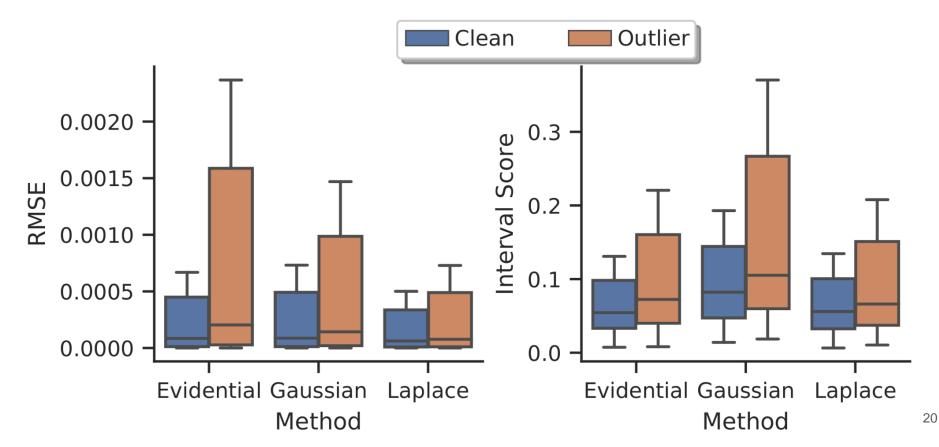




Clean vs Outlier Labels



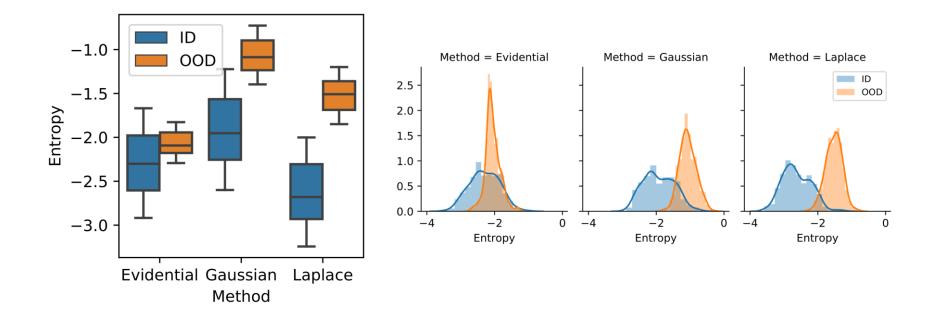
Clean vs Outlier Labels



Out-of-Distribution

NYUv2 Dataset In-Distribution Appollo Dataset Out-of-Distribution

Out-of-Distribution

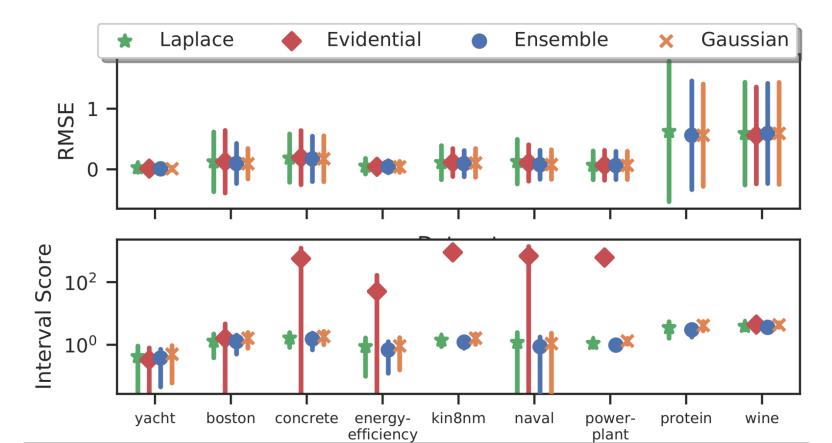


Conclusion

- We improve robustness of uncertainty estimation using a heavy-tailed distribution based loss function.
- When applied to high dimensional datasets containing outliers, such as depth estimation datasets, the Laplace loss function is able to **better estimate the uncertainties.**
- The proposed robust loss function could benefit in building software which uses uncertainty from the neural network for safe deployment of deep neural networks in autonomous systems.

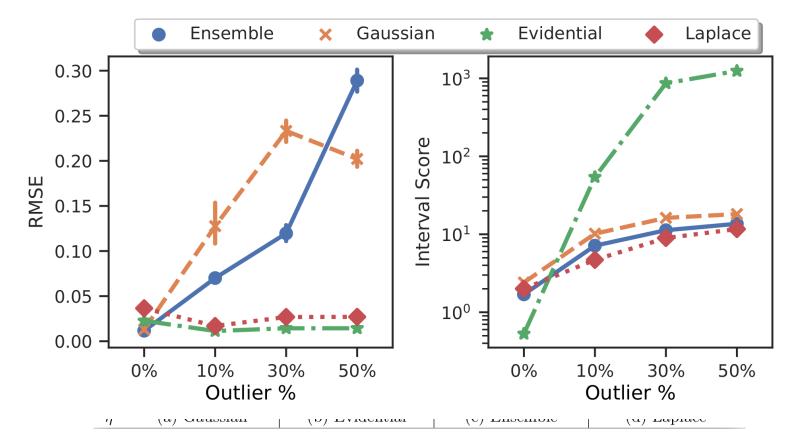
Thank you

Real World Datasets

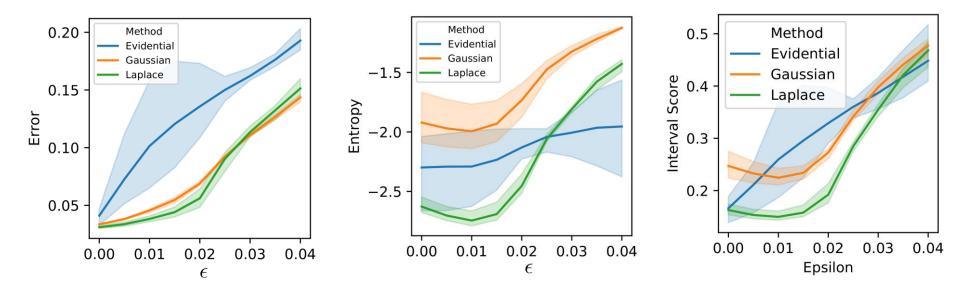


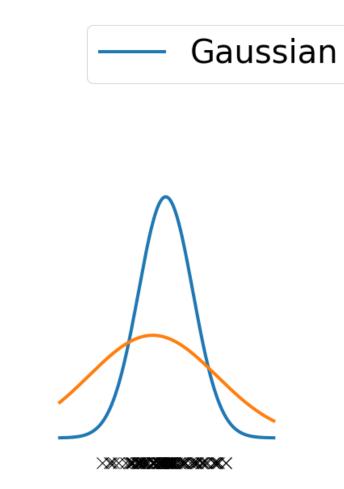
25

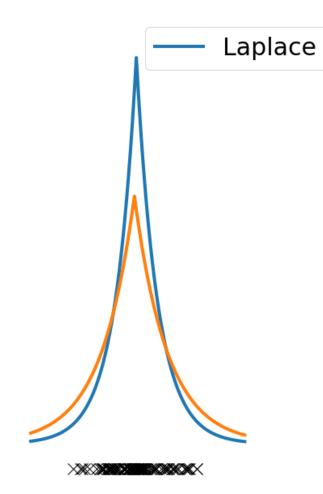
Breakaway point Benchmark: Toy dataset



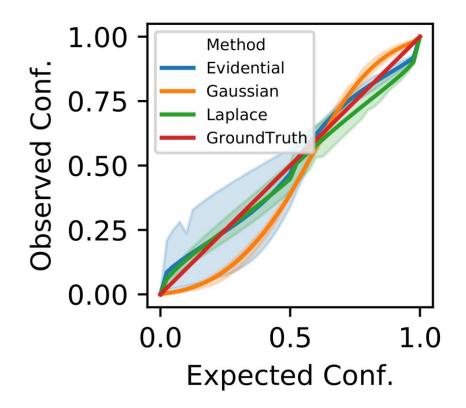
Adversarial Attack

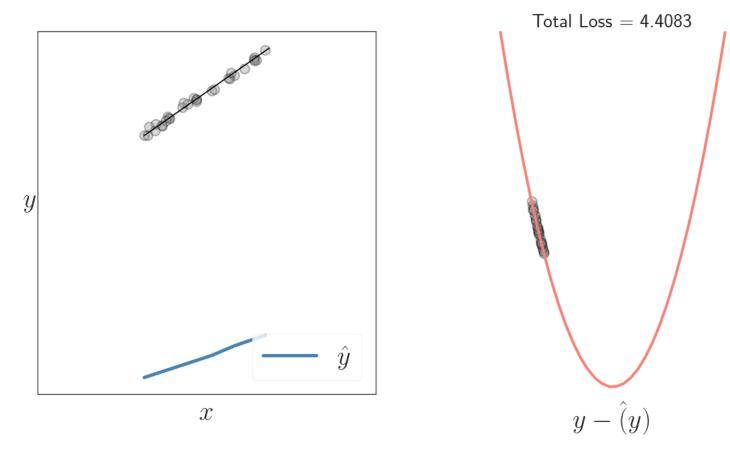




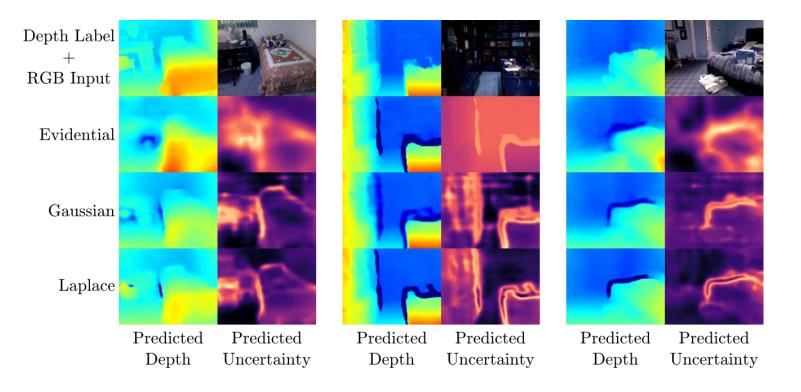


Confidence Calibration





Monocular Depth Estimation



Regression

 θ

