HiSaRL: A Hierarchical Framework for Safe Reinforcement Learning

AAAI SAFEAI WORKSHOP 2022

Zikang Xiong, Ishika Agarwal, Suresh Jagannathan Computer Science Department, Purdue University

Hierarchical Framework

Safe Plan ≠ Safe Framework

Architecture

Model-free Region of Attraction

Model-free RL

Suppose goal is g, robot position is x_t . $R(x_t) = e^{-||g-x_t||}$

Minimizing $\sum_{t=0}^{T} R(x_t)$ with RL.

Neural Lyapunov Function (NLF)

$$V(x_o) = 0$$

$$\forall x \neq x_o, V(x) > 0$$

$$V(x_{t+1}) - V(x_t) < 0$$

$$L_{lf}(\theta_V) = \mathbb{E}_{s_t \sim (E,\pi)}(V_{\theta_V}^2(s_o) + \max(0, -V_{\theta_V}(s_t)) + \max(0, \nabla_{\pi} V_{\theta_V}(s_t)))$$

Region of Attraction(ROA)

Set goal as origin $ROA = \{g + x \mid V(x) < C_{ROA}\}\$

Benchmarks

Safety Violation

Significant safety improvement when comparing with the simple hierarchical structure

More Recently

- ➤ We have extended our approach to challenging benchmarks
 - ➤ Complex robot which are hard to model and control
 - large DOF
 - High observation space dimension
 - Implicit observation like raw lidar data
 - Sensitive safety constraints that are easy to violate

Summary

- Model-free hierarchical framework for safe reinforcement learning
- Safely combine planning and control
- Learning-based Lyapunov function and Neural RoA
- Sequentially shielding
- Deployed the trained agent in complex environment with significant safety improvement.
- Some other experiments are provided in paper (Robustness to adversarial attack, runtime planning path repairer)

Thank you!