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• Data collection itself is not necessarily
an ‘objective process’ [1]

• Ex: COMPASS criminal recidivism
prediction. [2]
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The Group Conditional Confusion Matrix

A=0 Y
Pr(Y adj = 0|Y = 0, A = 0) Pr(Y adj = 0|Y = 1, A = 0) Pr(Y adj = 0|Y = 2, A = 0)

Yadj
Pr(Y adj = 1|Y = 0, A = 0) Pr(Y adj = 1|Y = 1, A = 0) Pr(Y adj = 1|Y = 2, A = 0)

Pr(Y adj = 2|Y = 0, A = 0) Pr(Y adj = 2|Y = 1, A = 0) Pr(Y adj = 2|Y = 2, A = 0)

A=1 Y
Pr(Y adj = 0|Y = 0, A = 1) Pr(Y adj = 0|Y = 1, A = 1) Pr(Y adj = 0|Y = 2, A = 1)

Yadj
Pr(Y adj = 1|Y = 0, A = 1) Pr(Y adj = 1|Y = 1, A = 1) Pr(Y adj = 1|Y = 2, A = 1)

Pr(Y adj = 2|Y = 0, A = 1) Pr(Y adj = 2|Y = 1, A = 1) Pr(Y adj = 2|Y = 2, A = 1)
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The Group Conditional Confusion Matrix

A=0 Y
Pr(Y adj = 0|Y = 0, A = 0) Pr(Y adj = 0|Y = 1, A = 0) Pr(Y adj = 0|Y = 2, A = 0)

Yadj
Pr(Y adj = 1|Y = 0, A = 0) Pr(Y adj = 1|Y = 1, A = 0) Pr(Y adj = 1|Y = 2, A = 0)

Pr(Y adj = 2|Y = 0, A = 0) Pr(Y adj = 2|Y = 1, A = 0) Pr(Y adj = 2|Y = 2, A = 0)

A=1 Y
Pr(Y adj = 0|Y = 0, A = 1) Pr(Y adj = 0|Y = 1, A = 1) Pr(Y adj = 0|Y = 2, A = 1)

Yadj
Pr(Y adj = 1|Y = 0, A = 1) Pr(Y adj = 1|Y = 1, A = 1) Pr(Y adj = 1|Y = 2, A = 1)

Pr(Y adj = 2|Y = 0, A = 1) Pr(Y adj = 2|Y = 1, A = 1) Pr(Y adj = 2|Y = 2, A = 1)
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Types of Multiclass Fairness

• Term by Term Equality of Odds
• Classwise Equality of Odds

• Diagonals and False Detection Rates:
Pr(Y adj = i |Y ̸= i , A = a)

• Multiclass Equality of Opportunity
• Demographic Parity:Pr(Y adj = i |A = a)

A=0 Y
Pr(Y adj = 0|Y = 0, A = 0) Pr(Y adj = 0|Y = 1, A = 0) Pr(Y adj = 0|Y = 2, A = 0)

Yadj
Pr(Y adj = 1|Y = 0, A = 0) Pr(Y adj = 1|Y = 1, A = 0) Pr(Y adj = 1|Y = 2, A = 0)

Pr(Y adj = 2|Y = 0, A = 0) Pr(Y adj = 2|Y = 1, A = 0) Pr(Y adj = 2|Y = 2, A = 0)
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The Linear Program

• All of the previous equalities under mild assumptions can be
written as linear constraints on Pr(Y adj |Y , A)

• We minimize a weighted sum of mismatch errors between Y adj

and Y: ∑
a∈A

|C |∑
i=1

∑
j ̸=i

Pr(Y adj = i , Y = j , A = a)l(i , j , a)
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The Linear Program

• All of the previous equalities under mild assumptions can be
written as linear constraints on Pr(Y adj |Y , A)

• We minimize a weighted sum of mismatch errors between Y adj

and Y: ∑
a∈A

|C |∑
i=1

∑
j ̸=i

Pr(Y adj = i , Y = j , A = a)︸ ︷︷ ︸
Joint Pr of error

l(i , j , a)︸ ︷︷ ︸
Weights
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Synthetic Results

Experiments with |A| = 3
Hyperparameter Level Change in Acc Change in TDR

Group Balance No Minority
One Slight Minority
One Strong Minority
Two Slight Minorities
Two Strong Minorities

Class Balance Balanced
One Rare
Two Rare

Pred Bias Low One
Low Two

Medium One -
Medium Two

High One
High Two
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Synthetic Results

Experiments with |A| = 3
Hyperparameter Level Change in Acc Change in TDR

Group Balance No Minority - -
One Slight Minority -0.03 -0.02
One Strong Minority -0.04 -0.01
Two Slight Minorities -0.05 -0.02
Two Strong Minorities -0.07 -0.01

Class Balance Balanced
One Rare
Two Rare

Pred Bias Low One
Low Two

Medium One -
Medium Two

High One
High Two
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Synthetic Results

Experiments with |A| = 3
Hyperparameter Level Change in Acc Change in TDR

Group Balance No Minority - -
One Slight Minority -0.03 -0.02
One Strong Minority -0.04 -0.01
Two Slight Minorities -0.05 -0.02
Two Strong Minorities -0.07 -0.01

Class Balance Balanced - -
One Rare 0.02 -0.04
Two Rare 0.07 -0.18

Pred Bias Low One
Low Two

Medium One -
Medium Two

High One
High Two
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Synthetic Results

Experiments with |A| = 3
Hyperparameter Level Change in Acc Change in TDR

Group Balance No Minority - -
One Slight Minority -0.03 -0.02
One Strong Minority -0.04 -0.01
Two Slight Minorities -0.05 -0.02
Two Strong Minorities -0.07 -0.01

Class Balance Balanced - -
One Rare 0.02 -0.04
Two Rare 0.07 -0.18

Pred Bias Low One - -
Low Two 0.00 -0.00

Medium One -0.06 -0.06
Medium Two -0.04 -0.06

High One -0.18 -0.16
High Two -0.15 -0.13
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Real-World Data Results

In-Sample Results

Dataset (N) # Terms % change % change
in Pa Old Acc −→ New Acc Pre −→ Post-Adj Disparity

Bar (N=22406) 18 -1% (88 % −→ 88%) -100% (0.11 −→ 0.00)
Parkinsons (N=5875) 18 -2% (93% −→ 91%) -100% (0.04 −→ 0.00)
Cannabis (N=1885) 18 -4% (74% −→ 71%) -100% (0.07 −→ 0.00)
Obesity (N=1490) 50 -7% (78% −→ 73%) -100% (0.05 −→ 0.00)

Out of Sample Results

Dataset (N) # Terms % change % change
in Pa Old Acc −→ New Acc Pre −→ Post-Adj Disparity

Bar (N=22406) 18 -6% (88 % −→ 83%) -95% (0.11 −→ 0.01)
Parkinsons (N=5875) 18 -12% (93% −→ 82%) 33% (0.04 −→ 0.05)
Cannabis (N=1885) 18 -18% (74% −→ 61%) 124% (0.07 −→ 0.16)
Obesity (N=1490) 50 -47% (78% −→ 41%) 45% (0.05 −→ 0.07)
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Real-World Data Results

In-Sample Results

Dataset (N) # Terms % change % change
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Dataset (N) # Terms % change % change
in Pa Old Acc −→ New Acc Pre −→ Post-Adj Disparity

Bar (N=22406) 18 -6% (88 % −→ 83%) -95% (0.11 −→ 0.01)
Parkinsons (N=5875) 18 -12% (93% −→ 82%) 33% (0.04 −→ 0.05)
Cannabis (N=1885) 18 -18% (74% −→ 61%) 124% (0.07 −→ 0.16)
Obesity (N=1490) 50 -47% (78% −→ 41%) 45% (0.05 −→ 0.07)
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Key Takeaways

• ML methods can propagate dataset bias
• Blackbox post-processing addreses fairness by updating model

outputs for fairness
• Our linear-program based approach works well when given

enough training data to reliably estimate probabilities
empirically, but fails on out-of-sample data otherwise.
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