Quantifying the Importance of Latent Features in Neural Networks

Amany Alshareef, Nicolas Berthier, Sven Schewe, Xiaowei Huang

Department of Computer Science University of Liverpool, UK

Challenges in Deep Neural Network Testing

- → Deep neural networks learn by example
- → Do **not** have a specific control-flow structure

- → Most testing techniques propose structural coverage
- → Tend at transforming in the input data

The factor causing the adversarial vulnerability is the distortion in the latent feature space.

→ Need to explore the internal logic of the learning models

Aim and Contribution

Understand the DNN underlying decision processes

Analyse the latent features learnt by the model

Generate additional test cases based on that

Estimate the **importance** of a neural network's **latent features** by analysing an associated **Bayesian network's sensitivity** to **distributional shifts**

Bayesian Network

A dimensionality reduction technique using feature extraction

algorithms to abstracts the behaviour of a DNN.

Constructing a Bayesian Network:

1. Hidden features extraction

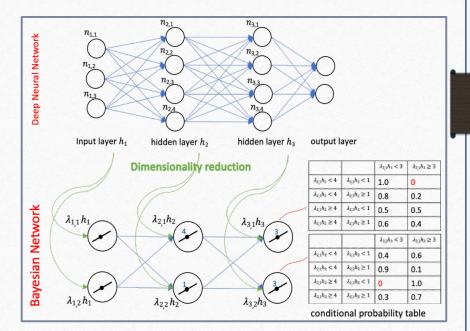
Map from a high-dimensional space into a feature space.

2. Feature space discretisation

Discretise each feature component into finite feature intervals.

3. Probability tables construction

Associate each feature with a marginal or a conditional probability table.



BN-based Latent Feature Analysis

Leverage the Bayesian Network to estimate the sensitivity of an individual feature to a controlled distribution shift.

1. Probability calculation for input sample under BN

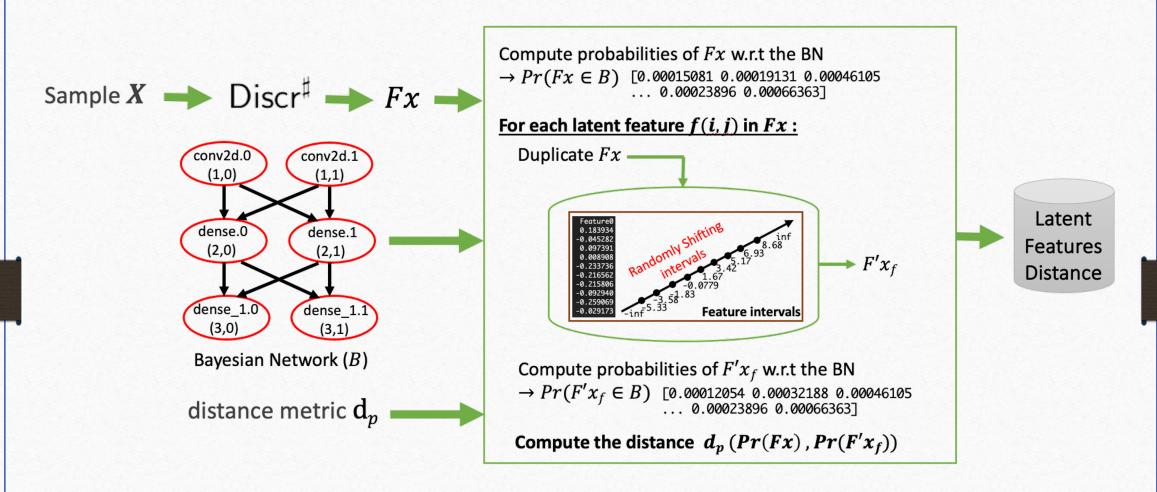
Perform the feature projection and discretisation step to input sample to obtain the associated feature intervals, and then calculate their probability belonging to the BN distribution.

2. Latent features perturbation

For each latent feature, randomly shifting its intervals in a selected feature space.

3. Distance computation

Compute the distance between the original probability vector and the probability vector obtained from the perturbed features.



BN analysis technique to compute the sensitivity of extracted latent features

Experiments

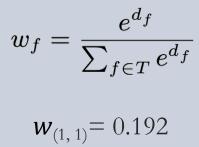
1) Feature Importance

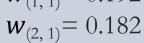
Associate each extracted feature f with a weight w_f based on the measured sensitivity distance.

Higher distribution change → Higher importance score

distance perturbed feature	d_{L_1}	d_{L_2}	$d_{L_{\infty}}$	d_{JS}	d_{corr}	d_{cos}	d_{MSE}	d_{RMSE}	d_{MAE}	d_{AF}
(1, 0)	150	0.726	0.00956	0.224	0.142	0.114	0.000 000 879	0.000937	0.000 249	0.278
(1, 1)	340	1.18	0.00989	0.353	0.448	0.361	0.00000232	0.00152	0.000567	0.735
(2,0)	325	1.09	0.00946	0.365	0.332	0.267	0.00000198	0.00141	0.000541	0.625
(2, 1)	360	1.16	0.0103	0.393	0.395	0.323	0.00000224	0.00150	0.000600	0.710
(3,0)	276	0.880	0.00889	0.258	0.170	0.137	0.00000129	0.00114	0.000460	0.408
(3, 1)	315	1.07	0.00960	0.324	0.318	0.264	0.00000192	0.00139	0.000525	0.608

Example distance measures of the MNIST model





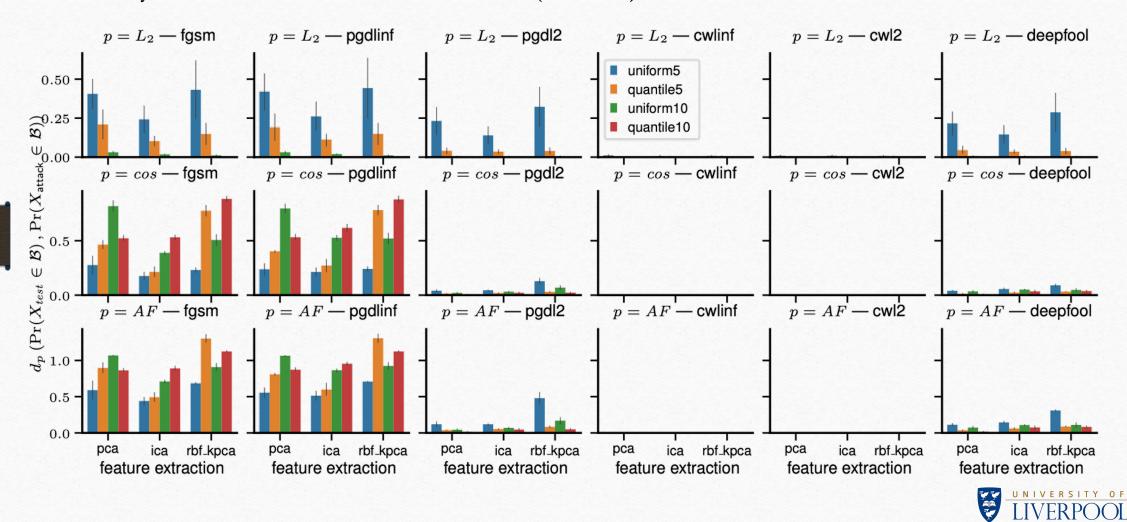
Experiments

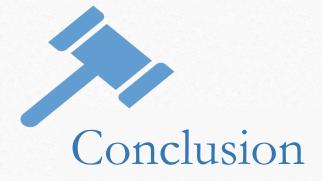
2) Sensitivity to Adversarial Distribution Shift

Assess whether the BN abstraction can detect the shift in the distribution of inputs that occurs when the NN is subject to adversarial examples.

- fgsm is the Fast Gradient Sign Method;
- pgdlinf and pgdl2 are the Projected Gradient Descent approach;
- wcwlinf and cwl2;
- Deepfool.
- \rightarrow Generate an adversarial dataset X_{attack} from the validation dataset X_{test}
- → Calculate the distance between their probability vectors

Sensitivity to Adversarial Distribution Shift (MNIST)

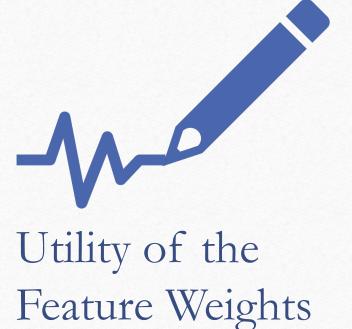




Computing distances between two BN probability distributions clean and perturbed by intervals-shift or adversarial attacks

- → Detect distribution shift
- → Reveal important features

Advanced a novel technique that employs a BN abstraction to investigate how to measure the importance of high level features when they are used by the neural network to make classification decisions



First, visualising the most important features provides insight into the model's internal decisions by highlighting dominating regions in the feature space.

Second, using the **importance measurement** to design high-level **testing** metrics that evaluate the robustness of the DNN.

Third, utilising the obtained **importance** in the **training** process and force the DNN to adjust its parameters according to the most relevant features to the prediction.

THANK YOU!

