AAAI's Workshop on Artificial Intelligence Safety, 2022

Differential Assessment of Black-Box AI Systems

Rashmeet Kaur Nayyar^{*}, Pulkit Verma^{*}, Siddharth Srivastava Arizona State University

How Would an End-User Assess an Adaptive AI System?

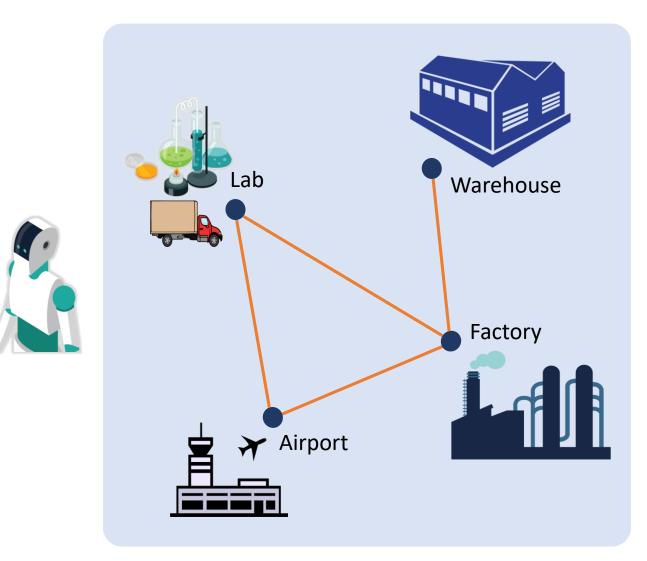
- AI systems should make it easy for its operators to learn how to use them safely.[†]
- How would we assess an AI system that can adapt its behavior?
- Much more challenging when the AI system is a black-box.

[†]Srivastava S. *Unifying Principles and Metrics for Safe and Assistive AI*. In Proc. AAAI 2021.

Image Source: Google Images

Will it be able to safely take my samples from the lab to the warehouse?

> I did not expect the truck to go from the lab to the warehouse via factory. What has changed?



Related Work

Related Approaches

Some approaches closely related to this work include:

- Learning models of agent behavior.
 - From passive observations. E.g., ARMS Yang et al. (AIJ 2007), LOCM Cresswell et al. (ICAPS 2009), FAMA Aineto et al. (AIJ 2019).
 - From active querying. E.g., AIA Verma et al. (AAAI 2021).
 - These approaches assume the model is stationary.
- Model maintenance and Model Reconciliation.
 - E.g., Marshal Bryce et al. (IJCAI 2016), MRP Chakraborti et al. (ICAPS)
 - They assume availability of updated model in STRIPS-like form.

STRIPS-like Modeling Language

Advantages

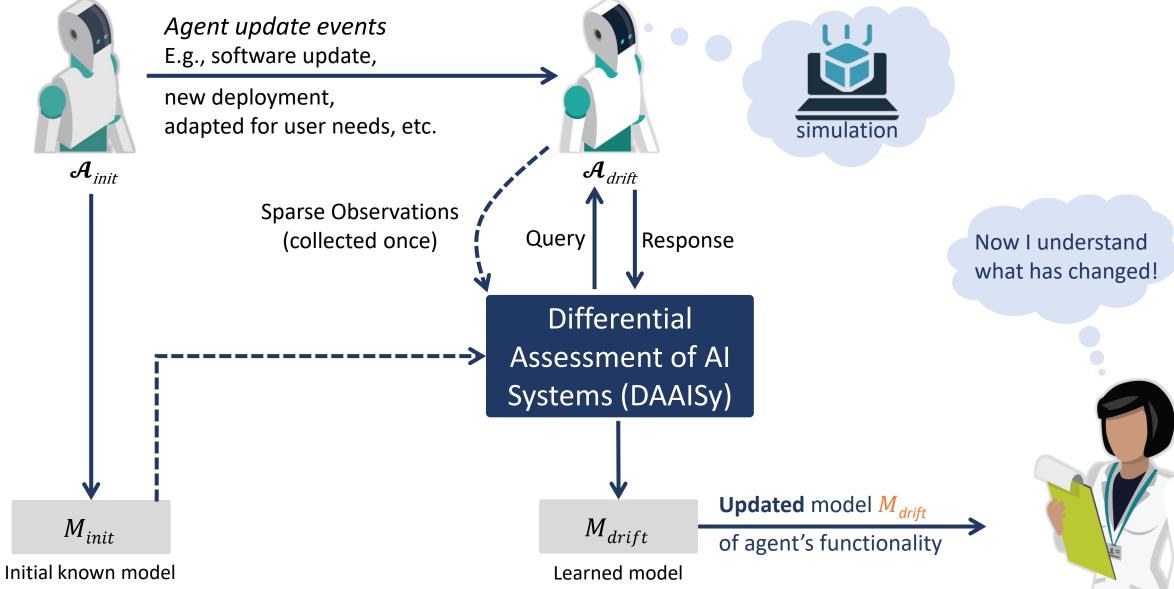
- Support interventions, assessment of causality
- Easy to convert into natural language text

Challenges

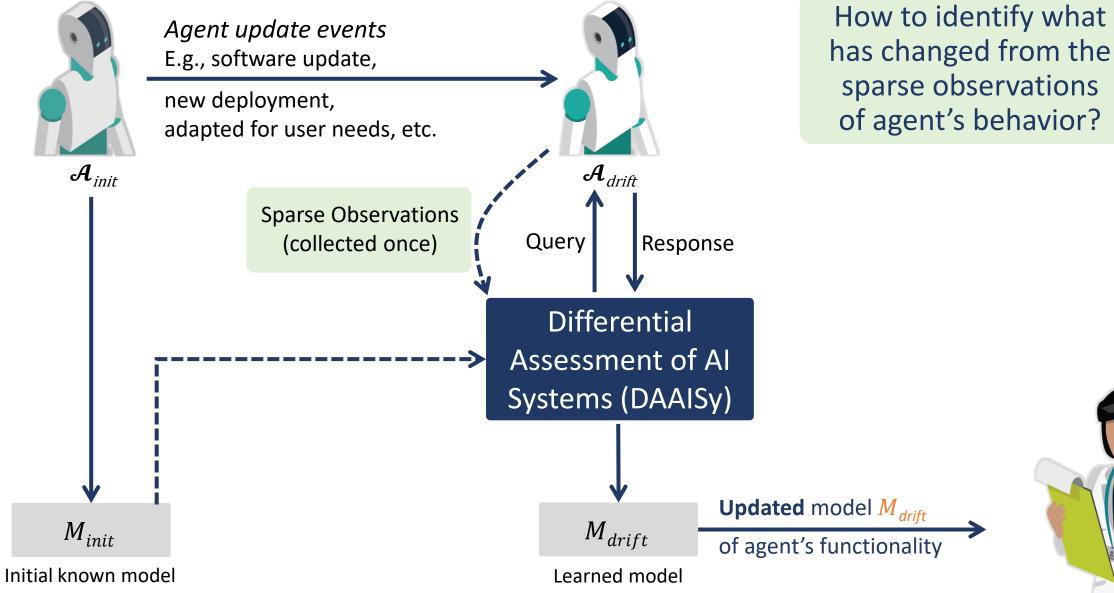
- Large space of possible models $(9^{|\mathbb{P}| \times |\mathbb{A}|})$
- P: variable-instantiated predicates
- A: parameterized actions

[Fully Observable, Deterministic]

Problem Overview

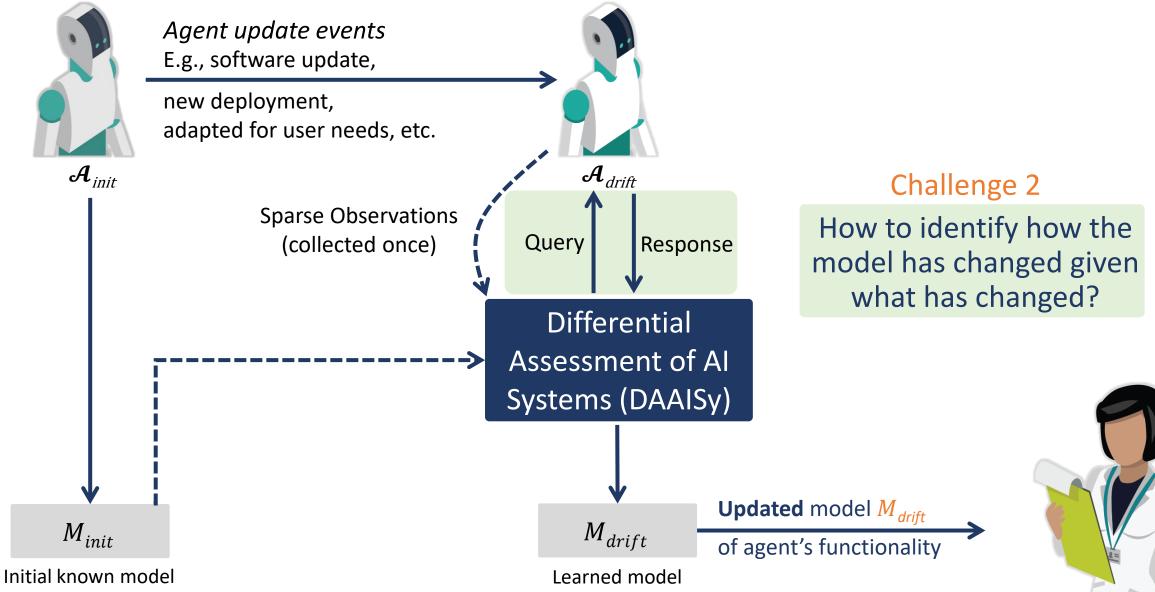


Key Challenges



AAAI 2022 SafeAI Workshop | Differential Assessment of Black-Box AI Systems | Rashmeet Kaur Nayyar*, Pulkit Verma*, Siddharth Srivastava

Challenge 1



Challenge 1

Identifying what has changed given the observations

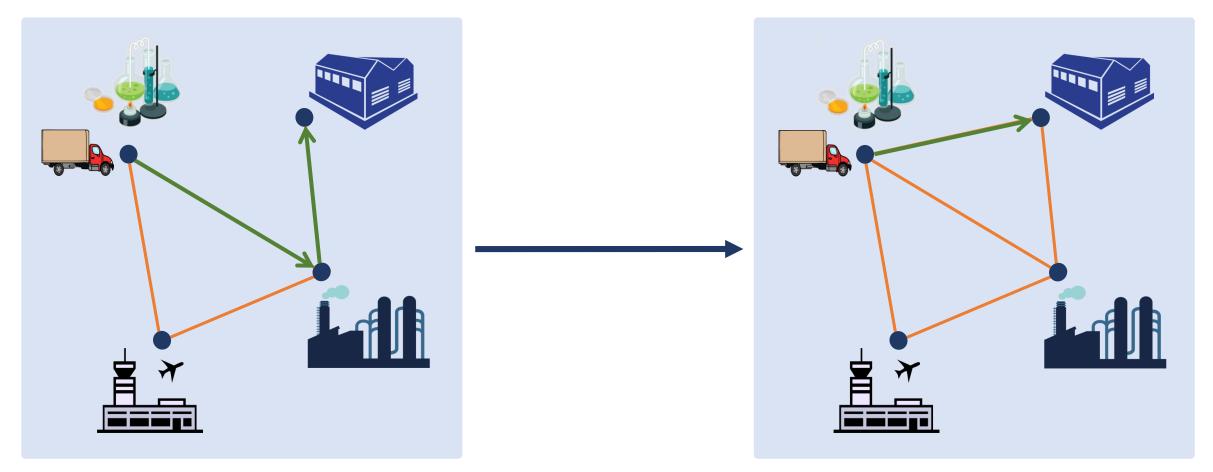
What can Change?

Any of these tuples could change their form:

- From + to –, e.g., (handempty) to (not(handempty))
- From to +, e.g., (not(handempty)) to (handempty)
- Can get dropped from precondition or effect.
- Another literal can get added as a precondition or effect.

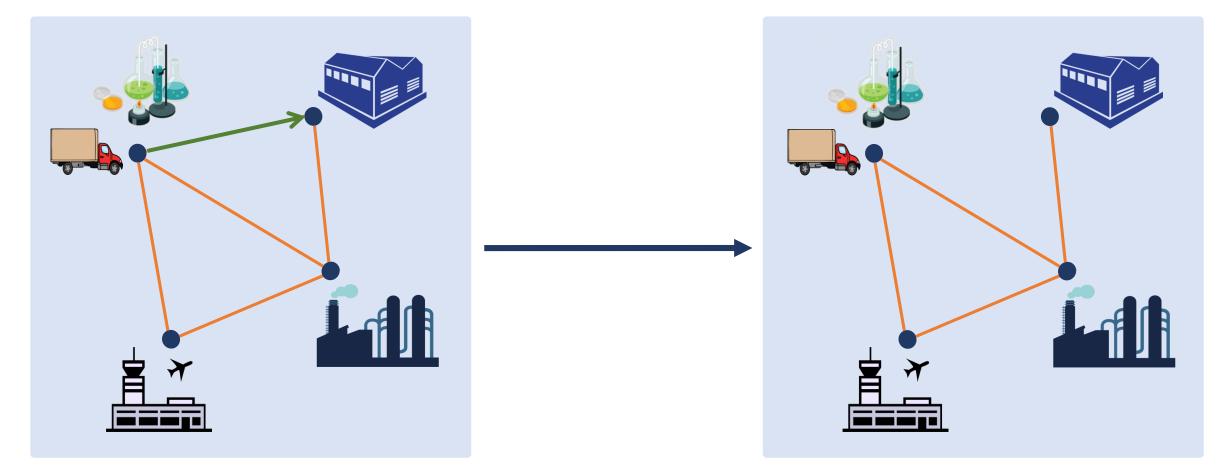
Two broad categories

Increased Functionality



Observed that the agent executed move (lab, warehouse)

Reduced Functionality



No observation corresponding to this reduction

Challenge 2

Identifying how the model has changed given what has changed.

AAAI 2022 SafeAI Workshop | Differential Assessment of Black-Box AI Systems | Rashmeet Kaur Nayyar*, Pulkit Verma*, Siddharth Srivastava

Query-Based Interaction

- We use a query-response mode of interaction with the agent.
- Helps identify how each of the tuple has changed.
- Query: $\langle s_I, \pi \rangle$ Initial State, Plan
- Response: $\langle \ell, s_F \rangle$

Length of plan that can be executed successfully and the final state.

- ir -
Ļ
n_1
n_2
n_3
n_4

Example Setting

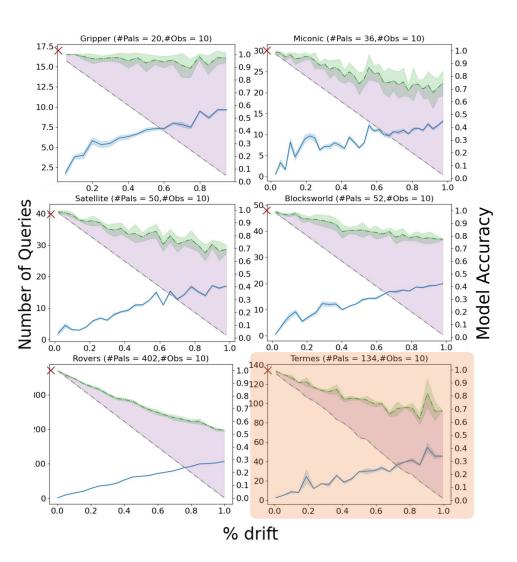
Tuples

Empirical Evaluation

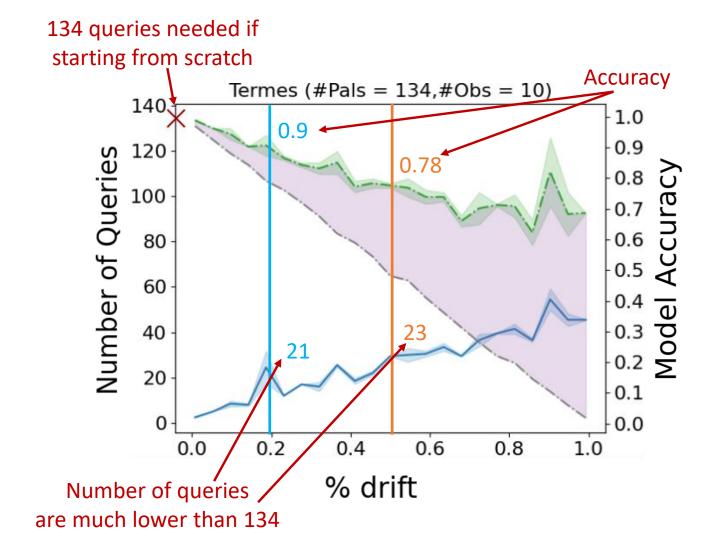
Experimental Setup

- Randomly generate initially known agents using IPC benchmark suite.
- Use 10 initial observations (state-action-state pairs) for unknown drifted IPC agent generated using IPC problems.
- Using previous model and available observations, predict what may have changed.
- Learn the updated model by querying for changed portions of the model.
- Evaluate performance of the assessment module and compare it with the vanilla active querying approach of assessing model from scratch.

Results



- Number of queries
- Accuracy gained
- --- Accuracy of initial model
- --- Accuracy of model computed by DAAISy
- × Number of queries by AIA



Results: Number of Queries

Domain	Max Tuples [#]	ΑΙΑ	DAAISy
Gripper	20	15.0	6.5
Miconic	36	32.0	7.7
Satellite	50	34.0	9.0
Blocksworld	52	40.0	11.4
Termes	134	115.0	27.0
Rovers	402	316.0	61.0

[#]Max Tuples is the upper bound on number of tuples in the domain.

The average number of queries to achieve same level of accuracy for 50% drifted models

- Results with FD planner with LM-Cut.
- Our approach, DAAISy, takes up to five times lesser queries than reassessment from scratch using AIA.
- Reassessment from scratch using other passive learning methods would take even longer.

Key Takeaways

rmnayyar@asu.edu

- A novel method for differential assessment of black-box AI systems that have drifted from their previously known functionality.
- Able to learn highly accurate models of functionality of agents issuing a significantly lower number of queries as opposed to relearning from scratch.
- Plan to extend the framework to more general classes, stochastic settings, and models.

 \mathbb{N}

siddharths@asu.edu

verma.pulkit@asu.edu