Do Androids Dream of Electric Fences?

Safe Reinforcement Learning with Imagination-Based Agents

Peter He, Borja Gonzalez Leon, Francesco Belardinelli

Peter He

Imperial College London University College London peter.he.21@ucl.ac.uk

Borja Gonzalez Leon

Imperial College London

Francesco Belardinelli

Imperial College London

Coming Up In Today's Presentation...

SOTA (Unsafe) RL Agent

Our Method

D. Hafner, et al. *Dream to Control: Learning Behaviors by Latent Imagination*. 2020. D. Hafner, et al. *Mastering Atari with Discrete World Models*. 2021.

"Bad things shouldn't happen"

"Bad things shouldn't happen"

"Bad things shouldn't happen"

$$\phi, \phi' ::= true \mid p \mid \neg \phi \mid \phi \land \phi' \mid \bigcirc \phi \mid \phi \cup \phi'$$

Safety

$\phi, \phi' ::= true \mid p \mid \neg \phi \mid \phi \land \phi' \mid \bigcirc \phi \mid \phi \cup \phi'$

 $\neg \texttt{agent_in_red_square} \cup \texttt{episode_ended}$

Shielding

M. Alshiekh et al. Safe Reinforcement Learning via Shielding. 2018

Shielding Safe Action Environment Observation, Shield Reward Agent Action

M. Alshiekh et al. Safe Reinforcement Learning via Shielding. 2018

Shielding Safe Action Environment $(open, 3 \le level < 4)$ Observation, Shield Reward (open, 99 \leq level < 100) Agent Action

Definitions Background Approach Findings Future

 (q_0) $(*, 0 \le level < 1)$

(open,1

 $\leq level < 2$)

 $(q_1) \rightarrow (*, 1 \leq level < 2)$

(open, 2

 $\leq level < 3)$

 $(*, 2 \leq evel < 3)$

 $(*, 99 \leq level < 100)$

 $(open, 2 \le level < 3)$

 $(open, 4 \le level < 5)$

(close, 0

 $\leq level < 1$)

 $(close, 1 \le level < 2)$

Shielding Safe Action Environment Observation, Shield Reward Agent Action

M. Giacobbe et al. Shielding Atari Games with Bounded Prescience. 2021.

Shielding

Given some finite trace

$$\rho = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \dots \xrightarrow{a_{n-1}} s_n$$

And the set of all finite traces of length *H* from state *s*, $\varrho_H(s)$

A policy π is *H*-bounded safe iff.

There are no safe traces

Future

$$\forall s \in \mathcal{S}.(\exists \rho = (s, a) \in \varrho_H(s)S(\rho, \phi) \land \pi(s_0) = a_0) \lor \forall \rho \in \varrho_H(s).\neg S(\rho, \phi))$$

If there is a safe trace of length *H*, we take it

M. Giacobbe et al. Shielding Atari Games with Bounded Prescience. 2021.

Our Approach

Model-Based RL to the Rescue!

- 1. Learn a model of the environment
- 2. Learn a policy inside the model of the environment
- 3. Collect data in the real environment using the learned policy
- 4. Repeat until convergence

D. Hafner, et al. *Dream to Control: Learning Behaviors by Latent Imagination*. 2020.D. Hafner, et al. *Mastering Atari with Discrete World Models*. 2021.

Model-Based RL to the Rescue!

- 1. Learn a model of the environment
- 2. Learn the policy using the model of the environment
- Collect data in the real environment using the learned policy
- 4. Also use the model of the environment to keep the agen New safe
- 5. Repeat until convergence

D. Hafner, et al. *Dream to Control: Learning Behaviors by Latent Imagination*. 2020. D. Hafner, et al. *Mastering Atari with Discrete World Models*. 2021.

 $h_t = f(h_{t-1}, z_{t-1}, a_{t-1})$ $z_t \sim q(z_t | h_t, o_t)$ $\hat{z}_t \sim p(\hat{z}_t | h_t)$ $\hat{o}_t \sim p(\hat{o}_t | h_t, z_t)$ $\hat{r}_t \sim p(\hat{r}_t | h_t, z_t)$

D. Hafner et al. Learning Latent Dynamics for Planning from Pixels. 2019.

Safety Recurrent State Space Model

Approximate Bounded Prescience

ABP Shielding for Latent Trajectories

ABP Shieldin

I looked forward in time, I saw 14,000,605 futures.

ABP

Shield

Shield

ation $|\pi(s_t)) < \epsilon$

rajectories

Safety Threshold

New!

In how many of those did a safety violation occur? ABP

Safe Alternative Po

 $\pi'(s_t) = \begin{cases} \pi(s_t) \\ \varsigma(s_t) \end{cases}$

Fewer than 14,000,605 * 8

Background Safe RL Approach Findings Future

ABP Shielding for Latent Trajectories

Training an Agent with Latent Shielding

- 1. Learn a SRSSM model of the environment
- 2. Learn the policy using the model of the environment, assigning a punishment to violation states
- Collect data in the real environment using the learned policy with the shield
- 4. Repeat until convergence

But It's Not All Fun and Games...

An inaccurate internal model of the environment can lead to the latent shield hindering exploration!

But It's Not All Fun and Games...

An inaccurate internal model of the environment can lead to the latent shield hindering exploration

But It's Not All Fun and Games...

In fact, even bounded prescience shielding can hinder exploration

Shield Introduction Schedules

Potential implementations:

- A gradually decaying probability of disabling the shield with respect to time
- Enabling the shield once the change in dynamics model loss falls to below some threshold
- Simply enabling shielding after a certain number of training episodes have been completed

Performance Evaluation

Seed 1

Seed 2

Baseline (Hafner et al.)

BPS (Giacobbe et al.)

be et al.) Latent Shield (ours)

M. Giacobbe et al. *Shielding Atari Games with Bounded Prescience.* 2021.

D. Hafner, et al. *Dream to Control: Learning Behaviors by Latent Imagination*. 2020.

D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.

Definitions Background Approach Findings

Future

Performance Evaluation

Static Gridworld

Procedurally Generated Gridworld

(see paper for MORE graphs)

- M. Giacobbe et al. Shielding Atari Games with Bounded Prescience. 2021.
- D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.
- D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.
- J. Achiam, et al. Constrained Policy Optimization. 2017.

Performance Evaluation

	Flavour	Metric	Latent	Unshielded	BPS	СРО
Visual Grid World	Fixed	Testing Reward	15067 (434)	13148 (249)	12468 (620)	-2925 (1065)
		Testing Violations	0.30 (0.76)	2.25 (1.60)	0 (0)	13.43 (19.25)
		Training Violations	1262 (172)	2306 (833)	0 (0)	16455 (1435)
	Procedural	Testing Reward	8084 (2221)	6825 (1427)	1938 (3552)	-1588 (2051)
		Testing Violations	4.50 (3.59)	33.7 (16.28)	0 (0)	19.60 (13.83)
		Training Violations	14018 (1852)	15309 (4686)	0 (0)	18705 (3756)
Cliff Driver	$p_{stick} = 0.1$	Testing Reward	8.57 (2.96)	10.76 (3.29)	10.50 (3.28)	7.56 (2.86)
		Testing Violations	0 (0)	0 (0)	0 (0)	3.40 (1.91)
		Training Violations	58.2 (9.60)	90.0 (9.10)	24.0 (13.02)	973.0 (357.7)
	$p_{stick} = 0.5$	Testing Reward	8.10 (4.99)	6.63 (8.07)	7.10 (9.52)	6.44 (3.00)
		Testing Violations	0.18 (0.84)	0.54 (1.53)	0.22 (1.18)	0.48 (1.24)
		Training Violations	91.8 (16.85)	157.6 (18.4)	80.4 (17.43)	3126 (2823)

M. Giacobbe et al. *Shielding Atari Games with Bounded Prescience*. 2021.

- D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.
- D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.
- J. Achiam, et al. Constrained Policy Optimization. 2017.

Examining Latent Dynamics

Open Questions

- + What's the best Shield Introduction Schedule?
- + How might we leverage uncertainty?
- + How might we leverage offline pre-training?

Takeaways

- + Latent shielding lets you shield agents in high-dimensional environments without knowledge of the dynamics *a priori*.
- It does this by learning the environment model rather than having it be handcrafted.
- Shielding can harm model-based DRL algorithms introduce the shield gently with a Shield Introduction Schedule.

