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Coming Up In Today’s Presentation…

D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.

D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.
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Given some finite trace

A policy 𝜋 is 𝐻-bounded safe iff.

And the set of all finite traces of length 𝐻 from state 𝑠,

If there is a safe trace of length 𝐻, we take it

There are no safe traces

M. Giacobbe et al. Shielding Atari Games with Bounded Prescience. 2021. Definitions Background Approach Findings Future
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Model-Based RL to the Rescue!

D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.

D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.

1. Learn a model of the environment

2. Learn a policy inside the model of the environment

3. Collect data in the real environment using the learned policy

4. Repeat until convergence
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Model-Based RL to the Rescue!

D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.

D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.

1. Learn a model of the environment

2. Learn the policy using the model of the environment

3. Collect data in the real environment using the learned 
policy

4. Also use the model of the environment to keep the agent 
safe

5. Repeat until convergence
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D. Hafner et al. Learning Latent Dynamics for Planning from Pixels. 2019.
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Approximate Bounded Prescience
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ABP Shielding for Latent Trajectories
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ABP Shielding for Latent Trajectories

π′ 𝑠𝑡 = ቊ
π 𝑠𝑡 ,

𝜍 𝑠𝑡 ,

if 𝑃 𝑠𝑡+1 𝑖𝑠 𝑎 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 π 𝑠𝑡 ) < 𝜖

otherwise Safety Threshold

Background Safe RL Approach Findings Future

Safe Alternative Policy

a safety violation occur?

Fewer than 14,000,605 * ℇ

ABP
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Training an Agent with Latent Shielding

1. Learn a SRSSM model of the environment

2. Learn the policy using the model of the environment, 

assigning a punishment to violation states

3. Collect data in the real environment using the learned  

policy with the shield

4. Repeat until convergence
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But It’s Not All Fun and Games…

An inaccurate internal model of the environment can 

lead to the latent shield hindering exploration!
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But It’s Not All Fun and Games…

In fact, even bounded prescience shielding can hinder 

exploration
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Shield Introduction Schedules

Potential implementations:

+ A gradually decaying probability of disabling the shield with 

respect to time

+ Enabling the shield once the change in dynamics model 

loss falls to below some threshold

+ Simply enabling shielding after a certain number of training 

episodes have been completed
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Performance Evaluation

Seed 1

Seed 2

BPS (Giacobbe et al.) Latent Shield (ours) Baseline (Hafner et al.)

M. Giacobbe et al. Shielding Atari Games with Bounded Prescience. 2021.

D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.

D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.
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Performance Evaluation

M. Giacobbe et al. Shielding Atari Games with Bounded Prescience. 2021.

D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.

D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.

J. Achiam, et al. Constrained Policy Optimization. 2017.

Static Gridworld Procedurally Generated Gridworld

(see paper for MORE graphs)
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Performance Evaluation

M. Giacobbe et al. Shielding Atari Games with Bounded Prescience. 2021.

D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.

D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.

J. Achiam, et al. Constrained Policy Optimization. 2017.



Examining Latent Dynamics

BPS

Dreamer

Ours
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Open Questions

+ What’s the best Shield Introduction Schedule?

+ How might we leverage uncertainty?

+ How might we leverage offline pre-training?
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Takeaways

+ Latent shielding lets you shield agents in high-dimensional 

environments without knowledge of the dynamics a priori.

+ It does this by learning the environment model rather than 

having it be handcrafted.

+ Shielding can harm model-based DRL algorithms -

introduce the shield gently with a Shield Introduction 

Schedule.
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