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D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.
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Safety

“Bad things shouldn’t happen”
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Model-Based RL to the Rescue!

Learn a model of the environment
Learn a policy inside the model of the environment
Collect data in the real environment using the learned policy

Repeat until convergence

s W=

D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.

D. Hafner, et al. Mastering Atari with Discrete World Models. 2021. Definitions Background Approach Findings Future



Model-Based RL to the Rescue!

1. Learn a model of the environment

2. Learn the policy using the model of the environment

3. Collect data in the real environment using the learned
policy

4. Also use the model of the environment to keep the ag
safe

5. Repeat until convergence

D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.

D. Hafner, et al. Mastering Atari with Discrete World Models. 2021. Definitions Background Approach Findings Future
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D. Hafner et al. Learning Latent Dynamics for Planning from Pixels. 2019.
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SRSSM with Neural Networks %
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Approximate Bounded Prescience %
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ABP Shielding for Latent Trajectories Nii
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ABP Shielding for Latent Trajectories Nii
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Training an Agent with Latent Shielding wi&

1. Learn a SRSSM model of the environment

2. Learn the policy using the model of the environment,
assigning a punishment to violation states

3. Collect data in the real environment using the learned
policy with the shield

4. Repeat until convergence

Definitions Background  Approach Findings Future



But It's Not All Fun and Games... %

An inaccurate internal model of the environment can
lead to the latent shield hindering exploration!

Definitions Background Approach Findings Future
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But It's Not All Fun and Games... %
-

In fact, even bounded prescience shielding can hinder
exploration
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Shield Introduction Schedules %

Potential implementations:

+ A gradually decaying probability of disabling the shield with
respect to time

+ Enabling the shield once the change in dynamics model
loss falls to below some threshold

+ Simply enabling shielding after a certain number of training
episodes have been completed

Definitions Background  Approach Findings Future



Performance Evaluation
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M. Giacobbe et al. Shielding Atari Games with Bounded Prescience. 2021.
D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020. o o
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Performance Evaluation
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Performance Evaluation

Flavour Metric Latent Unshielded BPS CcCPO
Testing Reward 15067 (434) 13148 (249) 12468 (620) -2925 (1065)
Fixed Testing Violations 0.30 (0.76) 2.25 (1.60) 00 13.43 (19.25)
Visual Training Violations 1262 (172) 2306 (833) 0 (0) 16455 (1435)
Grid World Testing Reward 8084 (2221) 6825 (1427) 1938 (3552) -1588 (2051)
Procedural Testing Violations 4.50 (3.59) 33.7 (16.28) 0 (0) 19.60 (13.83)
Training Violations | 14018 (1852) 15309 (4686) 0(0) 18705 (3756)
Testing Reward 8.57 (2.96) 10.76 (3.29) 10.50 (3.28) 7.56 (2.86)
Pstick = 0.1 Testing Violations 00 0(0) 0(0) 3.40(1.91)
CIliff Training Violations 58.2 (9.60) 90.0 (9.10) 24.0 (13.02) 973.0 (357.7)
Driver Testing Reward 8.10 (4.99) 6.63 (8.07) 7.10(9.52) 6.44 (3.00)
pstick = 0.5 Testing Violations 0.18 (0.84) 0.54 (1.53) 0.22(1.18) 0.48 (1.24)
Training Violations  91.8 (16.85) 157.6 (18.4) 80.4(17.43) 3126 (2823)

M. Giacobbe et al. Shielding Atari Games with Bounded Prescience. 2021.

D. Hafner, et al. Dream to Control: Learning Behaviors by Latent Imagination. 2020.
D. Hafner, et al. Mastering Atari with Discrete World Models. 2021.

J. Achiam, et al. Constrained Policy Optimization. 2017.
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Examining Latent Dynamics
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Open Questions

+ What's the best Shield Introduction Schedule?
+ How might we leverage uncertainty?
+ How might we leverage offline pre-training?
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Takeaways

+ Latent shielding lets you shield agents in high-dimensional
environments without knowledge of the dynamics a priori.

+ It does this by learning the environment model rather than
having it be handcrafted.

+ Shielding can harm model-based DRL algorithms -
introduce the shield gently with a Shield Introduction
Schedule.

Definitions Background  Approach Findings Future



