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The Gist

» Efficient adversarial sequence generation approach for RNN by SWFA
e Extract SWFA from RNN with the symbolic extraction algorithm Fast k-DCP
* Perturb the symbolic input to generate adversarial sequences
» Adversarial sequences generated by our approach are more covert
* Keep perturbation within the human-invisible range
» Implement adversarial sequence generation algorithm
* OQOutperform the state-of-art attack methods with 112.92% improvement and

1.44 times speedup
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Preliminaries

» Recurrent Neural Network
* RNN is denoted as a 6-tuple R=(H, X, Y, h,, f, g).

» Symbolic Weighted Finite Automata

* As well as WFA, SWFA can perform real-value operations
 SWFA is denoted as a 5-tuple Y = (G, Q,a, 3, A).



Symbolic Weighted Finite Automata

2 €% [weight * Transition edges are labelled by
= functions
* Enhance the abstraction ability
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e Can deal with a possibly
infinite alphabet efficiently
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Main Approach

» Symbolic Weighted Finite

Automata Extraction I. Symbolic Weighted Finite II. Adversarial Sequences
Automaton Extraction Generation
e Abstract the symbolic input |
Abstract Sumbalic Inpurt Perturb Symbolic Input
* Abstract the SWFA from RNN | Sql
Fast v
Check Symbolic Adversarial
» Adversarial Sequences e | Sequences
k-DCP |
Generation by SWFA Datasets g UL g 10 N lsamp‘e
i i~ 1 Concrete Adversarial
* @Gain the symbolic input ol

seguences
e Screen out the symbolic
adversarial sequences
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Symbolic Weighted Finite
Automata Extraction
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* The k-DCP captures the top k ranked class i
labels as well as their prediction confidence Fast k-DCP
levels. e

* High Efficiency: Discarding the time-
consuming k-means clustering and
establishing symbolic blocks directly. Build WFA

“

* Symbolic Abstraction: Extending to the
infinite alphabet, which deals with input

sym bo||ca||y @ From Du et al. 2019 directly
' . From Du et al. 2019 and improved

w Newly proposed in our approach



Fast k-DCP

(Our New Contribution)

* Time complexity: O(mns)
 Space complexity: O(T®)

e Suitable for large-scale tasks

Du et al. 2019:

Zhang, X.; Du, X.; Xie, X.; Ma, L.; Liu, Y.; and Sun, M.
2021. Decision-Guided Weighted Automata Extraction from
Recurrent Neural Networks. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 35(13): 11699-11707.

Algorithm 1: RNN-SWFA by Fast k-DCP
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input : RNN R= (H,X,Y, ho, f,9)
Input sequences W
K, T

output: SWFA T = (G, Q, a, 3, A)

Initialize Q' = [so], ¥ =[], Q =[],X = [];
Initialize A = [|,a = 7qo, 3 = [J;
d = ComputeDistance (W);
Tinput = [10/(d)/ (W] x [w])T;
for w € W do

s = [hO (W)l

for:=1to fuz):do
Q' .add(s;);
Z’.add(w,;_l)

for ¢’ € Q" do

| Quadd(fkdep™"(q)):
for o’ ¢ ¥ do

| Sadd(fhdepl” 1T (o7));
for c € X do

A, = BuildTransitionMatrixz(o);
| A.add(Ay);
for ¢ € Q do
By = 0 with length |L|;
for ¢’ € Q" do
if fkdcp™7T (¢') == q then
| Bqlargmaz(g(q'))]+ = 1;

B = Ba/ 2 -(Ba);
B B.add(B,);

G = GuardFuntionLearning(Q, «, 8, A);
return SWFA T = (G, Q, o, 3, A)




Adversarial Sequence Generation

(omitting details, cf. the paper)

» Step 1: Set an appropriate T, Algorithm 2: ,
Adversarial Sequence Generation by SWFA
» Step 2: Abstract input space i input : Input z;
o Continuous ¢ € {true, false};
* Divided By Fast k-DCP Number of nodes to be disturbed n;

: . Perturbation intensity €* € {1, 2, 3}.
 Aninterval [0,1] can be dividec output: Adversarial Sequence 2.

> Step 3: Find Direction and Pe ! Mitialize #5 = fhdep(zo): o= = [[: 6 = 0:
2 while § < €* do

» Step 4: Check “000-status” 5 | Nodes = NodesSearch(c,n):
' 4 for node € Nodes do
* Represent the input exceeds tl 5 dir = FindDirectionbyImportance(xf ); | -
6 Tpert = Pe’rt(:p(”il ,node, dir,9); 1(8) { ____________________ 1
z 7 if verifyBySW FA(zpe,) then /Ezﬁ\
[ - block,(0.667~1,0~0333,0.667~1) 8 B L 2" .add(Tpert); _/ Aﬁ X\ U
A > /‘ 9 5=9 + 1; T(6)~‘ U U I/U : e E*=U ](J(S)U
L] , . / T /s 2(5)
— 10 2’ = Sampling(x* ); =3
4 "o 11 return z’ —1
* blocka(0.333~0.667,0.667~1,0.333~0.667) ] 1

y s 3(5) 10



Experiment Setting

Public Datasets:

» NGSIM
* Next Generation Simulation (NGSIM) program collected
detailed vehicle trajectory data on southbound US 101 through
a network of synchronized digital video cameras.
» UCR time-series datasets
* Introduced in 2002, open source time-series data, with at least

one thousand making use of these datasets.

11
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Experiment Setting

Our Datasets:

» ADD (Proposed by this paper)

 Autonomous Driving Datasets Generated by Carla (Zhang et al.

2021)

" Serial number  Time step Longitude Coordinate @ Latitude Coordinate @ Vehicle Width(m) Head turn

1 -41.2 50.2 2
2 -43.1 50.5 2
1 Left
s -44.5 50.6 2
40 -48.6 50.4 2
il -48.6 50.4 2.5
2 -44.5 50.1 2.5
2 Right
-43.1 49.2 2.5
40 -41.2 49.8 2.5
1 100.2 1.2 2.5
2 101.9 2.3 2.5
3000 Straight
g 100.1 2.1 2.5
40 99.5 2.0 2.5

Car is turning left Our data structure 12



Experiment

I : RNN-SWEFA Extraction

Table 1: Comparison between SWFAs extracted by Fast k-
DCP on various time-series data

AoR: Accuracy of RNN (training/test)
AoS: Accuracy of SWFA (training/test)
ET: Extraction Time of SWFA

RT: Running Time of RNN

ST: Running Time of SWFA

* Reuse the time-consuming extraction

Datasets AoR(%) AOS(%) ET(s) RT(s) ST(s)
ADD  99/97 421.536  4.982 3214
NGSIM  91/86 @ 28.704  3.016 2971
PPOAG  75/88 35/43 2667 0224 0.443
CT 53/74 53/73  0.026  0.005 0.004
EQ 82/75 7229  1.112  1.194
Symbolic
Extraction
* RNN,. .= SWFA,_
* RNN =~ SWFA

RunningTime

RunningTime

Work in infinite alphabets
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Experiment I : SWFA-based adversarial
sequence generation

Table 2: Comparison between abstraction-based adversarial sequence generation approach and other adversarial attacking al-

gorithms on the autonomous driving dataset

Al

Category White Box Black Box Our Approach
Methods FGSM PGD NewtonKFool AbASG
Perturbation(d) 1 5 10 1 5 10 1 2 3 1 2 3
ASR(%) 0.00 | 0.33 | 21.66 | 0.00 | 0.33 3.8 11.33 | 17.66 | 25.23  20.52 | 34.36 | 53.72 |
Time(s) - 3.15 | 10.00 - 10.68 | 22.58 | 42.25 | 26.85 | 26.7 @ 39.94 | 20.42 | 18.55
( ® AbASG
1.0 :’ B & igZM
2] e ?:..!. o
. Jb { ®
Outstandlng success rate 06{ o o
0.2 0'0‘ ™
0.0 4 ." ® °® .0 09%° .\A.-;; ® © O ¢
Fast SpEEd ® goc0e®m o0 o .o'o.

0.0 0.2 0.4

0.6 0.8

1.0
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More efficient in generating
adversarial sequences
With more subtle perturbations

Take advantage of the real-value

operation ability of WFA to
simulate RNN.

Use the symbolic characteristics
of SWFA, which enhances
generalization.
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Conclusion

Main Contribution:

» The novel Fast k-DCP symbolic extraction algorithm

> Efficient adversarial sequence generation by SWFA

Main Advantage:

» Applicable to generate covert adversarial sequences
» Perturbation within human-invisible range

» Suitable for Spatio-temporal sequential tasks

16



Discussion

Drawbacks:
» Not yet adapting to large-class sequential data
» Should study on various datasets.

Future work:

» Further optimize our approach.
» Investigate the reachability analysis of SWFA.

» Explore more valuable properties of SWFA for improving efficiency.
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