A Gray Box Model for Characterizing Driver Behavior

Soyeon Jung, Ransalu Senanayake, Mykel J. Kochenderfer

SafeAl 2022 February 28, 2022

Autonomous driving

Safe integration

Human drivers

Autonomous vehicles

Autonomous driving

Validation through simulations

TransModeler

CARLA

Autonomous driving

Validation through simulations

TransModeler

CARLA

Realistic driver models

Gray-box model

Black-box model

Zero knowledge

- + : High expressivity
- : Lack Interpretability

White-box (Rule-based) model

Full knowledge

- + : High Interpretability, simple
- : Cannot model stochasticity

Gray-box model

Rule-based driver models

- IDM (Intelligent Driver Model)
 - Car-following model that governs longitudinal acceleration
 - Collision-free

$$egin{split} \ddot{x}_{ ext{IDM}} &= a_{ ext{max}} \left[1 - \left(rac{\dot{x}(t)}{v_{ ext{des}}}
ight)^4 - \left(rac{d_{ ext{des}}}{d(t)}
ight)^2
ight] \ d_{ ext{des}} &= d_{ ext{min}} + au \dot{x}(t) - rac{\dot{x}(t)\Delta \dot{x}(t)}{2\sqrt{a_{ ext{max}}b}} \end{split}$$

IDM parameter	Symbol
Desired speed (m/s)	$v_{ m des}$
Desired time gap (s)	au
Minimum acceptable gap (m)	d_{\min}
Max acceleration (m/s ²)	a_{\max}
Desired deceleration (m/s ²)	b

- Stochastic IDM
 - Additional variance term to IDM

$$\ddot{x}_{\mathrm{sIDM}} \sim \mathcal{N}(\ddot{x}_{\mathrm{IDM}}, \sigma_{\mathrm{IDM}}^2)$$

Treiber, M.; Hennecke, A.; and Helbing, D. 2000. Congested traffic states in empirical observations and microscopic simulations. *Physical Review E*, 62(2): 1805.
 Treiber, M.; and Kesting, A. 2017. The intelligent driver model with stochasticity—new insights into traffic flow oscillations. *Transportation Research Procedia*, 23: 174–187.

Rule-based driver models

- MOBIL (Minimizing Overall Braking Induced by Lane change)
 - Lane-changing model that governs lateral motion
 - Initiates a lane change when these conditions are met:

~ ~ ~ ~ ~	MODIL parameter	Symbol
$\ddot{x}_{ego} - \ddot{x}_{ego} + p\left(\ddot{x}_{new} - \ddot{x}_{new} + \ddot{x}_{old} - \ddot{x}_{old}\right) > \Delta a_{th}$	Politeness	p
~	Safe braking (m/s ²)	$b_{ m safe}$
$-\ddot{x}_{ m new} \leq b_{ m safe}$	Acceleration threshold (m/s ²)	$a_{ m th}$

MODIL

[1] Kesting, A.; Treiber, M.; and Helbing, D. 2007. General lane-changing model MOBIL for car-following models. Transportation Research Record, 1999(1): 86–94.

Stanford University

G----1--1

Problem Formulation

• Known variables

$$\mathbf{x} = \{ \left(x^{(i)}, y^{(i)} \right) \}_{i=1}^{N}$$

- *x* : longitudinal position measurements
- *y* : lateral position measurements
- *i* : vehicle index

- Likelihood of the next observation
 - Probability of *i*-th vehicle changing lane at each timestep

$$f_{\text{lane}}^{(i)}(\mathbf{x}, \mathbf{z}) = \begin{cases} \frac{1}{1 + e^{-\lambda^{(i)} \mathbf{c}}}, & \text{if (5) is me} \\ 0, & \text{otherwise} \end{cases}$$

where

$$\mathbf{C} = \tilde{\ddot{x}}_{ego}^{(i)} - \ddot{x}_{ego}^{(i)} + p^{(i)} \left(\tilde{\ddot{x}}_{new}^{(i)} - \ddot{x}_{new}^{(i)} + \tilde{\ddot{x}}_{old}^{(i)} - \ddot{x}_{old}^{(i)} \right) - \Delta a_{th}^{(i)}$$

• Sum of lane-changing case and lane-following case

$$\begin{split} p(\mathbf{x}^{\prime(i)} \mid \mathbf{x}, \mathbf{z}) = p_{\text{change}}(\mathbf{x}^{\prime(i)} \mid \mathbf{x}, \mathbf{z}) f_{\text{lane}}^{(i)} + \\ p_{\text{follow}}(\mathbf{x}^{\prime(i)} \mid \mathbf{x}, \mathbf{z}) \left(1 - f_{\text{lane}}^{(i)}\right) \end{split}$$

- Latent variables
 - $\mathbf{z} = \{v_{\text{des}}, \sigma_{\text{IDM}}, p, \lambda\}$
 - v_{des} : desired speed
 - σ_{IDM} : stochasticity parameter
 - *p* : politeness
 - λ : lane-changing parameter

Problem Formulation

- Parameter estimation using Expectation-maximization (EM) Algorithm
 - E-step

• M-step

$$\begin{aligned} Q_{t}(\mathbf{z}_{t}^{(i)}) &:= p(\mathbf{z}_{t}^{(i)} \mid \mathbf{x}_{t}^{\prime(i)}, \mathbf{x}_{t}; \theta) \\ &= \frac{p(\mathbf{x}_{t}^{\prime(i)} \mid \mathbf{z}_{t}^{(i)}, \mathbf{x}_{t}) p(\mathbf{z}_{t}^{(i)}; \theta)}{\sum_{\mathbf{z}_{t}^{(i)}} p(\mathbf{x}_{t}^{\prime(i)} \mid \mathbf{z}_{t}^{(i)}, \mathbf{x}_{t}) p(\mathbf{z}_{t}^{(i)}; \theta)} \end{aligned} \qquad \qquad \theta^{*} := \arg \max_{\theta'} \sum_{i=1}^{n} \sum_{t=0}^{T_{i}-1} \sum_{\mathbf{z}_{t}^{(i)}} Q_{i}(\mathbf{z}_{t}^{(i)} \mid \mathbf{z}_{t}^{(i)}, \mathbf{x}_{t}) p(\mathbf{z}_{t}^{(i)}; \theta) \end{aligned}$$

Experiments

• INTERnational, Adversarial and Cooperative moTION (INTERACTION) Dataset

- Baseline models
 - Default IDM+MOBIL parameter values
 - Parameters estimated using particle filtering

IDM parameter	Symbol	Value
Desired speed (m/s)	v_{des}	33.3
Desired time gap (s)	au	1.5
Minimum acceptable gap (m)	d_{\min}	2.0
Max acceleration (m/s^2)	a_{\max}	1.4
Desired deceleration (m/s ²)	b	2.0
MOBIL parameter	Symbol	Value
Politeness	p	0.5
Safe braking (m/s ²)	b_{safe}	2.0
Acceleration threshold (m/s ²)	$a_{ m th}$	0.1

[1] W. Zhan et al., "INTERACTION Dataset: An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps," arXiv:1910.03088 [cs, eess], 2019.

[2] Bhattacharyya, R.; Jung, S.; Kruse, L. A.; Senanayake, R.; and Kochenderfer, M. J. 2021. A Hybrid Rule-Based and Data-Driven Approach to Driver Modeling Through Particle Filtering. *IEEE Transactions on Intelligent Transportation Systems*.

Results

• Prediction accuracy

ADE-5	ADE-10	FDE-5	FDE-10
4.222	14.048	10.036	43.666
1.527	5.809	4.144	17.459
1.618	5.925	4.373	17.490
	ADE-5 4.222 1.527 1.618	ADE-5ADE-104.22214.0481.5275.8091.6185.925	ADE-5ADE-10FDE-54.22214.04810.0361.5275.8094.1441.6185.9254.373

• Data efficiency

	small (10 data points)	medium (50 data points)	large (original)
Default	_	_	4.222
PF	4.113	3.381	1.527
EM	4.292	2.705	1.618

• Safety

Frequency	collisions	hard brakes
Default	0.0000	0
PF	0.0059	0
EM	0.0032	0

Conclusions & Future work

- Conclusions
 - Developed a gray-box driver model to achieve both interpretability and variability.
 - Estimated distributions over IDM+MOBIL parameters using EM approach.
 - Achieved efficiency without sacrificing safety.

- Future Work
 - Use different distributions to define latent variables.
 - Analyze generalizability of proposed method using different scenarios and dataset.

Stanford Intelligent Systems Laboratory

SISL