SAFEAI 2022

BEYOND TEST ACCURACY – THE EFFECTS OF MODEL COMPRESSION ON CNNS

ADRIAN SCHWAIGER, KRISTIAN SCHWIENBACHER, KARSTEN ROSCHER

- Model compression
 - Enables deploying CNNs to low-power devices
 - Reduces model size and inference time significantly while maintaining accuracy

- Model compression
 - Enables deploying CNNs to low-power devices
 - Reduces model size and inference time significantly while maintaining accuracy
- We analyze how model compression changes CNNs "under the hood"
 - How is the predictive quality influenced on a class and sample level?
 - How is the attention of the models affected?

- Pruning
 - Induce sparsity by removing neurons or connections
 - Structured vs. unstructured pruning
 - Global vs. local pruning

Source: Han et. al: Learning both Weights and Connections for Efficient Neural Networks

- Pruning
 - Induce sparsity by removing neurons or connections
 - Structured vs. unstructured pruning
 - Global vs. local pruning

- Quantization
 - Reduce number of bits required to represent model parameters
 - Post training quantization vs. quantization aware training

Source: Han et. al: Learning both Weights and Connections for Efficient Neural Networks

— Networks

— LeNet-5 (~62k parameters), SqueezeNet (~750k), ResNet-18 (~11m)

— Networks

- LeNet-5 (~62k parameters), SqueezeNet (~750k), ResNet-18 (~11m)
- Datasets
 - **CIFAR-10** and German Traffic Sign Recognition Benchmark (**GTSRB**)

— Networks

- LeNet-5 (~62k parameters), SqueezeNet (~750k), ResNet-18 (~11m)
- Datasets
 - **CIFAR-10** and German Traffic Sign Recognition Benchmark (**GTSRB**)
- Model compression
 - **Global unstructured pruning** with L1 as scoring function
 - **Post-training quantization with 8-bit** for weight and activation precision
 - Post-training quantization with 4-bit for weight and 8-bit for activation precision
 - **Combination** of global unstructured pruning and 8-bit post-training quantization

GENERAL IMPACT OF MODEL COMPRESSION

- Decrease in accuracy after compression of < 1pp
 - Exception: 4-bit quantization half the time caused severe degradation, we ignored these instances

GENERAL IMPACT OF MODEL COMPRESSION

- Decrease in accuracy after compression of < 1pp
 - Exception: 4-bit quantization half the time caused severe degradation, we ignored these instances
- No difference between the two datasets
- ResNet affected the least, SqueezeNet the most
- Amount pruned up to 72.5%

GENERAL IMPACT OF MODEL COMPRESSION

- Decrease in accuracy after compression of < 1pp
 - Exception: 4-bit quantization half the time caused severe degradation, we ignored these instances
- No difference between the two datasets
- ResNet affected the least, SqueezeNet the most
- Amount pruned up to 72.5%
- Difference in classifications after pruning of up to 7.5%

CHANGES REGARDING CLASS CONFUSION AND ACCURACY

- Pruning and quantization can introduce
 significant changes at the class level
- No pattern in the classes affected by any of the applied compression methods
- Combination of pruning and quantization didn't show any peculiarities

CHANGES REGARDING MODEL CONFIDENCE

 Compression methods can significantly change the prediction confidence, especially for differently classified samples

CHANGES REGARDING MODEL CONFIDENCE

- Compression methods can significantly change the prediction confidence, especially for differently classified samples
- However, no explicit uncertainty quantification technique was employed

CHANGES IN SALIENCY MAPS

- Compression methods don't systematically change the attention of the model
- Saliency maps change significantly after compression with an average mean absolute deviation of ~7.5%
- Even for ResNet-18 on CIFAR-10 we saw a significant difference in the saliency maps

CHANGES IN SALIENCY MAPS

- Compression methods **don't systematically** change the attention of the model
- Saliency maps change significantly after compression with an average mean absolute deviation of $\sim 7.5\%$
- Even for ResNet-18 on CIFAR-10 we saw a significant difference in the saliency maps
- But also raises questions regarding the expressiveness of saliency maps generated with this method

automobile

- Model compression introduces significant changes that are not uncovered by superficial metrics
 - Changes in predicted class of up to 7.5%
 - Changes in accuracy on the class level of up to 15pp
 - Drastic changes in the confidence scores in some cases
 - Significant differences in the observed input salience

- Model compression introduces significant changes that are not uncovered by superficial metrics
 - Changes in predicted class of up to 7.5%
 - Changes in accuracy on the class level of up to 15pp
 - Drastic changes in the confidence scores in some cases
 - Significant differences in the observed input salience

— Future directions

- Investigation of further model compression techniques
- Development of further methods to systematically analyze ML systems beyond current metrics
- Research regarding continuous safety assurance to consider safety as integral part of ML development