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Formal safety verification of neural networks

Safety-critical applications that require formal safety guarantees
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Many existing works assume policy and 
environment are deterministic
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Future work
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Bayesian neural networks (BNNs)

● Weights are random variables
● Learns uncertainties as arbitrary posterior distributions
● In this work: ReLU activations and Gaussian priors



BNN verification

Existing verification methods: Sampling-based

● Statistical guarantees [1] or lower bounds on safety probability [2]
● In closed-loop systems with BNN policies, statistical guarantees on safety 

over finite and bounded time horizon [3]

[1] Cardelli et al. Statistical Guarantees for the Robustness of Bayesian Neural Networks. IJCAI 2019
[2] Wicker et al. Probabilistic Safety for Bayesian Neural Networks. UAI 2020
[3] Michelmore et al. Uncertainty quantification with statistical guarantees in end-to-end autonomous driving control. ICRA 2020



Need for sure safety guarantees

● Prior weight distributions have unbounded support
● Posteriors also likely to have unbounded support

-> BNNs are typically unsafe by default
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Safe weight sets for feed-forward BNNs

Input set Unsafe set

Reduction to 
MILP/SMT solving



Closed-loop system with BNN policies

Environment
xt+1 = f(xt, ut)

BNN policy

xt

ut

Infinite time horizon safety verification
Input set: X0

Unsafe set: Xu



Positive invariants as safety certificates

● X0 ⊆ Inv
● Xu ⋂ Inv = ∅
● For each x∊Inv and (w,b)∊Wϵ

π, we have f(x,πw,b(x))∊Inv

Unsafe set XuInitial set X0



Learner-verifier framework

● Consider invariant membership as a binary classification problem
● Represent invariant as a (deterministic) neural network

Learner
(minimize loss) Verifier

Invariant candidate

Counterexample
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Learner

Closedness under system 
dynamics w.r.t. the weight set

Positive in initial states
Negative in unsafe states



Verifier

Check that the candidate satisfies 3 conditions (via reduction to MILP/SMT)

● X0 ⊆ Inv
● Xu ⋂ Inv = ∅
● For each x∊Inv and (w,b)∊Wϵ

π, we have f(x,πw,b(x))∊Inv



Safe exploration RL

● Exploration in RL requires randomized actions



Experiments

Closed-loop system vector field Learned invariant (1 iteration) Learned invariant (5 iterations)



Conclusion

● Novel view of the verification problem for BNNs – need for sure safety and
the computation of safe weight sets

● For feedforward BNNs – reduction to constraint solving
● For closed-loop systems with BNN policies – a learner-verifier framework to 

learn positive invariants
● Experimental results that demonstrate the effectiveness

Code available: https://github.com/mlech26l/bayesian_nn_safety

https://github.com/mlech26l/bayesian_nn_safety
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Stability

System is stable ⇔ System can recover to safe region from any system state
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Stochastic feedback loop systems

Environment
xt+1 = f(xt, ut, wt)

Learned policy

xt

ut

Stochastic disturbance
wt ∼ d



Stability verification for stochastic feedback loop systems

Environment
xt+1 = f(xt, ut, wt)

Learned policy

xt

ut

Stabilization set Xs, policy 𝜋

Assumptions: Xs is closed under system dynamics
                      X is compact
                      f, 𝜋 are Lipschitz continuous
                     



Stability verification for stochastic feedback loop systems

Environment
xt+1 = f(xt, ut, wt)

Learned policy

xt

ut

Almost-sure asymptotic stability verification: Verify that Prob[reach Xs] = 1 for each initial state x0
            (each x0 induces a probability space over trajectories that start in x0)
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Related work

● Stability verification for deterministic systems via Lyapunov functions (LFs)
○ Convex optimization for polynomial systems
○ More recently: Learning neural network LFs

● Stability verification for stochastic control systems
○ Mostly theoretical works on stochastic extensions of LFs
○ Abstraction based methods, verify weaker notion of stability or over finite time horizon

● Termination analysis in probabilistic programs
○ Ranking supermartingales (RSMs) are another stochastic extension of LFs
○ Computation via convex optimization or learning

In this work: Learn RSMs for stability verification



Stability verification via RSMs

An RSM for      is a continuous function                     which is nonnegative

and for which there exists ϵ > 0 such that

holds for each 



Stability verification via RSMs

An RSM for      is a continuous function                     which is nonnegative

and for which there exists ϵ > 0 such that

holds for each 

Theorem 1 (Stability). If there exists an RSM for      then      is almost-surely asymptotically 
stable for the system.



Stability verification via RSMs

An RSM for      is a continuous function                     which is nonnegative

and for which there exists ϵ > 0 such that

holds for each 

Theorem 2 (Bounds on stabilization time). If there exists an RSM for      then:

●
●
● If the system has c-bounded differences, then 



Learner-verifier framework

● Represent RSM candidate as a neural network

Learner
(minimize loss) Verifier

RSM candidate

Counterexamples



Verifier

Due to compactness and continuity, need only to check the condition

for every state 



Verifier

Due to compactness and continuity, need only to check the condition

for every state 

Idea: Discretize states space and check

at each state in the grid, where K is a Lipschitz bound of the system
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Learner

Training objective: Empirical estimate of the expected value

For faster verifier runtime -> add regularization to keep Lipschitz constant of the 
RSM network reasonable

Theorem. Loss is minimized when           is an RSM.   
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Experiments - Stabilization time

RSM implies stabilization time

Need to compute eps and min[V(x)]

Stabilization time for the inverted 
pendulum system (contour lines)



Conclusion

1. RSMs prove almost-sure stability in stochastic feedback loop systems, and 
provide bounds on stabilization time.

2. A framework for learning neural network RSMs.

3. Method for computing the expected value of a neural network function over a 
probability distribution.

4. Empirical validation of our approach on two RL benchmarks.


