
Closed-loop Safety of Bayesian
Neural Networks and

Stochastic Control Systems
Mathias Lechner

Formal safety verification of neural networks

Safety-critical applications that require formal safety guarantees

Closed-loop systems

Neural network policy Environment
Action

State

Closed-loop systems

● Safety
○ System never reaches unsafe states

● Stability
○ System always reaches target states

Neural network policy Environment
Action

State

Closed-loop systems

● Safety
○ System never reaches unsafe states

● Stability
○ System always reaches target states

Neural network policy Environment
Action

State

Many existing works assume policy and
environment are deterministic

Deterministic system Stochastic system

Deterministic policy

Stochastic policy

Closed-loop stability and safety

Deterministic system Stochastic system

Deterministic policy “Solved” via Lyapunov and
Barrier functions

Stochastic policy

Closed-loop stability and safety

Closed-loop stability and safety

Deterministic system Stochastic system

Deterministic policy “Solved” via Lyapunov and
Barrier functions

This talk (Lechner et al. 2022
AAAI)

Stochastic policy This talk (Lechner et al. 2021
NeurIPS)

Closed-loop stability and safety

Deterministic system Stochastic system

Deterministic policy “Solved” via Lyapunov and
Barrier functions

This talk (Lechner et al. 2022
AAAI)

Stochastic policy This talk (Lechner et al. 2021
NeurIPS)

Future work

Infinite Time Horizon Safety of
Bayesian Neural Networks

Mathias Lechner*, Đorđe Žikelić*, Krishnendu Chatterjee, Thomas A. Henzinger
IST Austria

* equal contribution

Bayesian neural networks (BNNs)

● Weights are random variables
● Learns uncertainties as arbitrary posterior distributions
● In this work: ReLU activations and Gaussian priors

BNN verification

Existing verification methods: Sampling-based

● Statistical guarantees [1] or lower bounds on safety probability [2]
● In closed-loop systems with BNN policies, statistical guarantees on safety

over finite and bounded time horizon [3]

[1] Cardelli et al. Statistical Guarantees for the Robustness of Bayesian Neural Networks. IJCAI 2019
[2] Wicker et al. Probabilistic Safety for Bayesian Neural Networks. UAI 2020
[3] Michelmore et al. Uncertainty quantification with statistical guarantees in end-to-end autonomous driving control. ICRA 2020

Need for sure safety guarantees

● Prior weight distributions have unbounded support
● Posteriors also likely to have unbounded support

-> BNNs are typically unsafe by default

Verification problem: safe weight set computation

Verification problem: identify a safe weight set for a BNN 𝜋, in the form of a
product of intervals around means

Verification problem: safe weight set computation

Verification problem: identify a safe weight set for a BNN 𝜋, in the form of a
product of intervals around means

Problem 1: feed-forward BNNs

Problem 2: closed-loop system with a BNN policy

Verification problem: safe weight set computation

Verification problem: identify a safe weight set for a BNN 𝜋, in the form of a
product of intervals around means

Problem 1: feed-forward BNNs

Problem 2: closed-loop system with a BNN policy

 Use rejection sampling to re-calibrate BNNs and ensure safety

Verification problem: safe weight set computation

 Use rejection sampling to re-calibrate BNNs and ensure safety

Safe weight sets for feed-forward BNNs

Input set Unsafe set

Safe weight sets for feed-forward BNNs

Input set Unsafe set

Reduction to
MILP/SMT solving

Closed-loop system with BNN policies

Environment
xt+1 = f(xt, ut)

BNN policy

xt

ut

Infinite time horizon safety verification
Input set: X0

Unsafe set: Xu

Positive invariants as safety certificates

● X0 ⊆ Inv
● Xu ⋂ Inv = ∅
● For each x∊Inv and (w,b)∊Wϵ

π, we have f(x,πw,b(x))∊Inv

Unsafe set XuInitial set X0

Learner-verifier framework

● Consider invariant membership as a binary classification problem
● Represent invariant as a (deterministic) neural network

Learner
(minimize loss) Verifier

Invariant candidate

Counterexample

Learner

Learner

Positive in initial states
Negative in unsafe states

Learner

Closedness under system
dynamics w.r.t. the weight set

Positive in initial states
Negative in unsafe states

Verifier

Check that the candidate satisfies 3 conditions (via reduction to MILP/SMT)

● X0 ⊆ Inv
● Xu ⋂ Inv = ∅
● For each x∊Inv and (w,b)∊Wϵ

π, we have f(x,πw,b(x))∊Inv

Safe exploration RL

● Exploration in RL requires randomized actions

Experiments

Closed-loop system vector field Learned invariant (1 iteration) Learned invariant (5 iterations)

Conclusion

● Novel view of the verification problem for BNNs – need for sure safety and
the computation of safe weight sets

● For feedforward BNNs – reduction to constraint solving
● For closed-loop systems with BNN policies – a learner-verifier framework to

learn positive invariants
● Experimental results that demonstrate the effectiveness

Code available: https://github.com/mlech26l/bayesian_nn_safety

https://github.com/mlech26l/bayesian_nn_safety

Stability Verification in Stochastic
Control Systems via Neural Network

Supermartingales
Mathias Lechner*, Đorđe Žikelić*, Krishnendu Chatterjee, Thomas A. Henzinger

IST Austria

* equal contribution

Stability

System is stable ⇔ System can recover to safe region from any system state

Stochastic feedback loop systems

Environment
xt+1 = f(xt, ut, wt)

Learned policy

xt

ut

Stochastic feedback loop systems

Environment
xt+1 = f(xt, ut, wt)

Learned policy

xt

ut

Stochastic disturbance
wt ∼ d

Stability verification for stochastic feedback loop systems

Environment
xt+1 = f(xt, ut, wt)

Learned policy

xt

ut

Stabilization set Xs, policy 𝜋

Assumptions: Xs is closed under system dynamics
 X is compact
 f, 𝜋 are Lipschitz continuous

Stability verification for stochastic feedback loop systems

Environment
xt+1 = f(xt, ut, wt)

Learned policy

xt

ut

Almost-sure asymptotic stability verification: Verify that Prob[reach Xs] = 1 for each initial state x0
 (each x0 induces a probability space over trajectories that start in x0)

Related work

● Stability verification for deterministic systems via Lyapunov functions (LFs)
○ Convex optimization for polynomial systems
○ More recently: Learning neural network LFs

● Stability verification for stochastic control systems
○ Mostly theoretical works on stochastic extensions of LFs
○ Abstraction based methods, verify weaker notion of stability or over finite time horizon

Related work

● Stability verification for deterministic systems via Lyapunov functions (LFs)
○ Convex optimization for polynomial systems
○ More recently: Learning neural network LFs

● Stability verification for stochastic control systems
○ Mostly theoretical works on stochastic extensions of LFs
○ Abstraction based methods, verify weaker notion of stability or over finite time horizon

● Termination analysis in probabilistic programs
○ Ranking supermartingales (RSMs) are another stochastic extension of LFs
○ Computation via convex optimization or learning

Related work

● Stability verification for deterministic systems via Lyapunov functions (LFs)
○ Convex optimization for polynomial systems
○ More recently: Learning neural network LFs

● Stability verification for stochastic control systems
○ Mostly theoretical works on stochastic extensions of LFs
○ Abstraction based methods, verify weaker notion of stability or over finite time horizon

● Termination analysis in probabilistic programs
○ Ranking supermartingales (RSMs) are another stochastic extension of LFs
○ Computation via convex optimization or learning

In this work: Learn RSMs for stability verification

Stability verification via RSMs

An RSM for is a continuous function which is nonnegative

and for which there exists ϵ > 0 such that

holds for each

Stability verification via RSMs

An RSM for is a continuous function which is nonnegative

and for which there exists ϵ > 0 such that

holds for each

Theorem 1 (Stability). If there exists an RSM for then is almost-surely asymptotically
stable for the system.

Stability verification via RSMs

An RSM for is a continuous function which is nonnegative

and for which there exists ϵ > 0 such that

holds for each

Theorem 2 (Bounds on stabilization time). If there exists an RSM for then:

●
●
● If the system has c-bounded differences, then

Learner-verifier framework

● Represent RSM candidate as a neural network

Learner
(minimize loss) Verifier

RSM candidate

Counterexamples

Verifier

Due to compactness and continuity, need only to check the condition

for every state

Verifier

Due to compactness and continuity, need only to check the condition

for every state

Idea: Discretize states space and check

at each state in the grid, where K is a Lipschitz bound of the system

Learner

Training objective: Empirical estimate of the expected value

Learner

Training objective: Empirical estimate of the expected value

For faster verifier runtime -> add regularization to keep Lipschitz constant of the
RSM network reasonable

Learner

Training objective: Empirical estimate of the expected value

For faster verifier runtime -> add regularization to keep Lipschitz constant of the
RSM network reasonable

Theorem. Loss is minimized when is an RSM.

Expected value computation

Compute

Expected value computation

Compute

Problem: V is a neural network -> No simple closed form solution

Expected value computation

Compute

Problem: V is a neural network -> No simple closed form solution

Solution: Decompose integral to sum and bound sum terms via abstract
interpretation

Expected value computation

Compute

Problem: V is a neural network -> No simple closed form solution

Solution: Decompose integral to sum and bound sum terms via abstract
interpretation

Experiments

● Two environments
○ 2D system
○ Inverted pendulum

Experiments

● Two environments
○ 2D system
○ Inverted pendulum

● Train neural network policy using PPO
○ Policy network: [128,128] hidden dimension with ReLU activation

Experiments

● Two environments
○ 2D system
○ Inverted pendulum

● Train neural network policy using PPO
○ Policy network: [128,128] hidden dimension with ReLU activation

● Run prototype implementation of our algorithm
○ RSM network: [128] hidden dimension with ReLU activation

Experiments

● Two environments
○ 2D system
○ Inverted pendulum

● Train neural network policy using PPO
○ Policy network: [128,128] hidden dimension with ReLU activation

● Run prototype implementation of our algorithm
○ RSM network: [128] hidden dimension with ReLU activation

Experiments

● Two environments
○ 2D system
○ Inverted pendulum

● Train neural network policy using PPO
○ Policy network: [128,128] hidden dimension with ReLU activation

● Run prototype implementation of our algorithm
○ RSM network: [128] hidden dimension with ReLU activation

Experiments - Stabilization time

RSM implies stabilization time

Need to compute eps and min[V(x)]

Experiments - Stabilization time

RSM implies stabilization time

Need to compute eps and min[V(x)]

Stabilization time for the inverted
pendulum system (contour lines)

Conclusion

1. RSMs prove almost-sure stability in stochastic feedback loop systems, and
provide bounds on stabilization time.

2. A framework for learning neural network RSMs.

3. Method for computing the expected value of a neural network function over a
probability distribution.

4. Empirical validation of our approach on two RL benchmarks.

