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Neural networks: just mathematical functions?
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Neural networks: looking at the source code



Research challenges

Verifying quantized NN

▶ Even floating-point is quantized!

▶ Fixed-point/integer arithmetics for
low-power devices

▶ Approximated activation functions

▶ Complexity NP → PSPACE-hard

More software idiosyncrasies

▶ NaN, overflow, underflow

▶ Memory bugs, buffer overflows

▶ Concurrent execution bugs (GPUs)



Quantization effects

Number of bits

Safety Prop. 6 7 8 9 10 11 12 13 28 29 30 31 32

Set.
R40 S S F S S S S S . . . S S S S S
R50 S S F F F F F F . . . F F F F S

Vers.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S F F F S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Virg.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S S F S S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Table: Effects of quantization on the safety of a NN for the Iris dataset.



Existing works

NN as an ideal mathematical function
▶ See last year’s VNN-COMP’21

▶ Winner: αβ-CROWN

▶ Runners-up: VeriNet, Oval,
ERAN. . .

Quantization effects

▶ Giacobbe et al., 2019 (ReLU-N)

▶ Henzinger et al., 2021 (ReLU-N)

▶ Baranowski et al., 2020
(fixed-point)

Other implementation effects

▶ Odena et al., 2019 (fuzz testing)

▶ Sena et al., 2019 (CUDA)
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Our verification framework (high-level view)

Goal
▶ Support floating-point, fixed-point,

integer and binary arithmetic

▶ Support all activation functions

▶ Let the user specify a wide range of
safety properties

Main ideas
▶ Apply model checking techniques

▶ C code as a low level abstraction

▶ Safety property with assume() and
assert() instructions

▶ Convert code + property into SMT

▶ Check satisfiability of SMT formula
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Our verification framework (SMT encoding)



Our verification framework (activation functions)

Encoding non-linear functions

▶ Piecewise linear (e.g. ReLU) → if-then-else

▶ Others (e.g. sigmoid, tanh) → lookup table (DSP-style)

▶ Speeds up both inference and verification!



Our verification framework (interval analysis)
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Input set propagation

▶ Transferable from verification of ideal NNs

▶ Generates an overapproximation of the neuron values

▶ Reduces the search space for safe (S) instances



Our verification framework (comparison with SOTA)
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Warning: this is not an equal contest!

▶ Comparison between infinite precision and fixed-point

▶ Useful as a qualitative result



Conclusions

Summary

▶ Implementations of NNs are software!

▶ Quantization effects, finite arithmetic, other potential bugs

▶ Higher theoretical complexity than verifying ideal NNs

▶ Positive note: similar verification time in practice

Further resources
▶ Try our QNNVerifier tool:

▶ https://arxiv.org/abs/2111.13110

▶ Read our pre-print journal paper:

▶ https://arxiv.org/abs/2106.05997JournalPaper

Thank you!

https://arxiv.org/abs/2111.13110
https://arxiv.org/abs/2106.05997 Journal Paper

