
Verifying Quantized Neural Networks using
SMT-Based Model Checking

Luiz Sena, Xidan Song, Erickson Alves, Iury Bessa, Edoardo
Manino, Lucas Cordeiro, Eddie de Lima Filho

EnnCore, University of Manchester, Universidade Federal do Amazonas

February 28, 2022



Neural networks: just mathematical functions?

xj Σ Nk(uk)

Activation
function

yk

Output

x1

xm

Bias
bk

...

...

w1,k

wj ,k

wm,k

uk

Weights

Inputs



Neural networks: looking at the source code



Research challenges

Verifying quantized NN

▶ Even floating-point is quantized!

▶ Fixed-point/integer arithmetics for
low-power devices

▶ Approximated activation functions

▶ Complexity NP → PSPACE-hard

More software idiosyncrasies

▶ NaN, overflow, underflow

▶ Memory bugs, buffer overflows

▶ Concurrent execution bugs (GPUs)



Quantization effects

Number of bits

Safety Prop. 6 7 8 9 10 11 12 13 28 29 30 31 32

Set.
R40 S S F S S S S S . . . S S S S S
R50 S S F F F F F F . . . F F F F S

Vers.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S F F F S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Virg.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S S F S S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Table: Effects of quantization on the safety of a NN for the Iris dataset.



Existing works

NN as an ideal mathematical function
▶ See last year’s VNN-COMP’21

▶ Winner: αβ-CROWN

▶ Runners-up: VeriNet, Oval,
ERAN. . .

Quantization effects

▶ Giacobbe et al., 2019 (ReLU-N)

▶ Henzinger et al., 2021 (ReLU-N)

▶ Baranowski et al., 2020
(fixed-point)

Other implementation effects

▶ Odena et al., 2019 (fuzz testing)

▶ Sena et al., 2019 (CUDA)



Existing works

NN as an ideal mathematical function
▶ See last year’s VNN-COMP’21

▶ Winner: αβ-CROWN

▶ Runners-up: VeriNet, Oval,
ERAN. . .

Quantization effects

▶ Giacobbe et al., 2019 (ReLU-N)

▶ Henzinger et al., 2021 (ReLU-N)

▶ Baranowski et al., 2020
(fixed-point)

Other implementation effects

▶ Odena et al., 2019 (fuzz testing)

▶ Sena et al., 2019 (CUDA)



Our verification framework (high-level view)

Goal
▶ Support floating-point, fixed-point,

integer and binary arithmetic

▶ Support all activation functions

▶ Let the user specify a wide range of
safety properties

Main ideas
▶ Apply model checking techniques

▶ C code as a low level abstraction

▶ Safety property with assume() and
assert() instructions

▶ Convert code + property into SMT

▶ Check satisfiability of SMT formula



Our verification framework (high-level view)

Goal
▶ Support floating-point, fixed-point,

integer and binary arithmetic

▶ Support all activation functions

▶ Let the user specify a wide range of
safety properties

Main ideas
▶ Apply model checking techniques

▶ C code as a low level abstraction

▶ Safety property with assume() and
assert() instructions

▶ Convert code + property into SMT

▶ Check satisfiability of SMT formula



Our verification framework (SMT encoding)



Our verification framework (activation functions)

Encoding non-linear functions

▶ Piecewise linear (e.g. ReLU) → if-then-else

▶ Others (e.g. sigmoid, tanh) → lookup table (DSP-style)

▶ Speeds up both inference and verification!



Our verification framework (interval analysis)

100 101 102 103 104 105 106

100

101

102

103

104

105

No intervals
is better Intervals

are better

Verif. time w/o intervals (s)

V
er
if
.
ti
m
e
w
it
h
in
te
rv
al
s
(s
) Iris (S)

Iris (F)

Vocalic (S)

Vocalic (F)

Input set propagation

▶ Transferable from verification of ideal NNs

▶ Generates an overapproximation of the neuron values

▶ Reduces the search space for safe (S) instances



Our verification framework (comparison with SOTA)

10−1 100 101 102 103 104
10−1

100

101

102

103

104

Marabou is better

Ours is better

Marabou’s verif. time (s)

O
u
r
ve
ri
f.

ti
m
e
(s
)

AcasXu p1 (S-F)

10−1 100 101 102
10−1

100

101

102

103

104

Single-thread
Neurify is better

Ours is better

Neurify’s single-thread verif. time (s)

O
u
r
ve
ri
f.

ti
m
e
(s
)

AcasXu p1 (S-F)

Warning: this is not an equal contest!

▶ Comparison between infinite precision and fixed-point

▶ Useful as a qualitative result



Conclusions

Summary

▶ Implementations of NNs are software!

▶ Quantization effects, finite arithmetic, other potential bugs

▶ Higher theoretical complexity than verifying ideal NNs

▶ Positive note: similar verification time in practice

Further resources
▶ Try our QNNVerifier tool:

▶ https://arxiv.org/abs/2111.13110

▶ Read our pre-print journal paper:

▶ https://arxiv.org/abs/2106.05997JournalPaper

Thank you!

https://arxiv.org/abs/2111.13110
https://arxiv.org/abs/2106.05997 Journal Paper

