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Problem definition

The black-box behavior of Convolutional Neural Networks is one of the biggest
obstacles to the development of a standardized validation process. Methods for
analyzing and validating neural networks currently rely on approaches and met-
rics provided by the scientific community without considering functional safety re-
quirements. However, automotive norms, such as 1S026262 and ISO/PAS21448,
do require a comprehensive knowledge of the system and of the working environ-
ment in which the network will be deployed. In order to gain such a knowledge and
mitigate the natural uncertainty of probabilistic models, we focused on investigat-
ing the influence of filter weights on the classification confidence in Single Point
Of Failure fashion. We laid the theoretical foundation of a method called the Neu-
rons’ Criticality Analysis. This method, as described in this article, helps evaluate
the criticality of the tested network and choose related plausibility mechanism.

Neural criticality

Experiment setup
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Conclusion

The motivation behind testing different network architectures was to see the influence of
models’ chronological improvements on the decision stability, such as residual connec-
tions, depthwise convolution and scaling. We therefore evaluated VGG16, Resnet50V2,
MobileNetV2 and EfficientNetBO0, all pre-trained Keras models on ImageNet. We chose two
classes, "street sign" and "mountain bike", in order to evaluate the criticality. For each class,
150 samples were taken. All samples had ground-truth confidence higher than 0.8 so that
we ensured that kernels’ responses would be highly excitated. Adversary samples were
generated by non-target FSGD method until either achieving a confidence greater than 0.5
or ending after 20 iterations. For all tests we set the criticality threshold 7 to 0.0, which allows
the algorithm to measure and visualize the criticality of all neurons and distinguish between
critical and anti-critical ones. In practice, the threshold should be justifiable via hazard and
risk assessment and will be presumably higher than 0.0.

Firstly, we denote the analyzed convolutional neural network as N, which consists
of a set of layers L, containing weights 1V and biases b and we introduced the
criticality metric according to Equation 1
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where f. returns a criticality with domain |0, 2| for a given CNN which is masked,
fm(x;) € N. The masking of a CNN is carried out by setting neurons’ weights to
zero. In case of convolution, all the values of a filter are set to zero. A different
kind of error modeling would lead to extensive permutation and was therefore not
further investigated.

Neural criticality analysis

Secondly, we constructed the evaluation algorithm 1 which calculates the critical-
ity for a given input image z;, belonging to class i, drawn from a test set X'. We
define the task of NCA as the analysis of the neurons’ contribution to the classifi-
cation hypothesis which can be seen as equivalent to the Single Point Of Failure
analysis. If all neurons are active, the resulting hypothesis is strong /¢, whereas
In case a certain amount of neurons have been excluded from the decision, the
hypothesis is considered weakened h,,,.,.- The neuron’s criticality observation of
the weakened hypothesis has to be done for every image and class within a test
set.

Algorithm 1: NCA algorithm
Data: Let X' be a testing set, ¢ a tested class, NV the analyzed CNN, & the

number of filters in a layer L and f., is the criticality function

for image z; € X do
y; = calculate_conf (N, x;)
cls; = predict(N, x;)
for every L in N do
for every k in layer L do

mask_neuron(k)

Umi = calculate_conf (N, x;)

cls,; = predict(N, x;)

criticality = fer (Ui, Umi, clS;, clSm;)
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Fig. 1: Analysis of MobileNetv2 architecture showed a higher instability caused by projection layers. The image on the left shows

weighted criticality per layer, whereas the image on the right depicts the 20 most critical neurons of the block 1_project layer.
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Fig. 2: Accuracy stability of the 100 most critical neurons on normal dataset (for class "mountain bike"), showing a gradual increase

of accuracy with respect to decreasing neurons’ criticality in case of MobileNetv2 model.
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Fig. 3: MobileNetV2's accuracy stability of the 100 most critical neurons, taken from the analysis of a normal dataset and evaluated
on an adversary dataset. Neurons with increased accuracy could be further used for diagnosis purposes, but have to be chosen
with respect to both mean and standard deviation of the resulting accuracy. In such a diagnostic case, masking multiple neurons

could be desirable and would lead to higher diagnoses accuracy.

We dedicated a great part of our work to introducing and testing an innovative
method, the Neurons’ Criticality Analysis. The outcome of this analysis was a
comprehensive report diagram depicting the criticality of each layer and each
neuron of evaluated model. The domain of criticality is [—1,2|. We discussed
that masking neurons with negative criticality can also have a positive influence
on the model’s decision confidence. We called this behavior "anti-critical". The
inter-class anti-critical neurons could hypothetically be removed from the deci-
sion process. This idea led us to the conclusion that the correlation between
the neurons removed during the pruning process and the anti-critical neurons
discovered via NCA should be further investigated.

We claimed that using spatial aggregation via projection layers may on the one
hand improve the high dimensional feature representation [1], but on the other
hand creates very critical dense connections, especially in the shallow layers,
as we pointed out. From functional safety point of view this isn’'t necessarily
negative, since the plausibility function could be applied to only a concentrated
area of neurons. In addition, some critical neurons showed the ability to increase
mean accuracy on adversary dataset, which could be used in order to discover
adversary attacks and irregularities during inference. We hypothesize that an
equilibrium between the position of the first projection layer, number of critical
neurons and models’ accuracy should be further investigated.

As aforementioned, the purpose of NCA is to identify critical neurons. With fur-
ther measures, the mean and standard deviation of the criticality should be de-
creased and the flawless calculation of the neuron should be diagnosed. Con-
cretely this can be achieved by several approaches, such as:

» fine-tuning of the model with deterministic dropout and loss which will incor-
porate the layers criticality

« plausibility check of the critical neurons or layers or redundant computa-
tional branch results

« storage of the neurons’ weights and biases in two places in RAM and com-
paring them

* introduction of inverse layers in order to compute and evaluate the original
Inputs over critical connections

Our method can also be used for Out-of-Distribution detection, where instead
of randomly sampling sub-networks predictions, as it is done by MC dropout,
deterministic dropout would be based on several highly critical neurons for ev-
ery class. Such an approach would decrease the computational demand and
arguably increase the reliability and transparency of such a network. In order
to encourage additional experiments and deeper explorations, we published our
code and supplement results on GitLab
https://gitlab.com/divisvaclav/cnn_eval_tool/-/tree/wo_gui_branch
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