Challenges for Using Impact Regularizers to Avoid Negative Side Effects

David Lindner, Kyle Matoba, Alexander Meulemans

Agents and side effects

Agents fulfill tasks by maximizing cumulative reward

Agents and side effects

- Agents fulfill tasks by maximizing cumulative reward
- - O What should the agent not do?
- Side effects

Agents and side effects

- Agents fulfill tasks by maximizing cumulative reward
- - O What should the agent do?
- > Side effects
- ▶ Impact regularizers

$$R(s) = R_{\text{spec}}(s) + R_{\text{IR}}(s)$$

Impact Regularizers

$$R(s_t) = R_{\mathrm{spec}}(s_t) - \lambda \cdot d(s_t, b(s_0, s_{t-1}, t))$$

Impact Regularizers

Baseline

Baseline

Problems with inaction baseline

- Offsetting

Offsetting

Undesirable offsetting

Source: Designing agent incentives to avoid side effects

Offsetting

Undesirable offsetting

Source: Designing agent incentives to avoid side effects

Desirable offsetting

Offsetting

Undesirable offsetting

Source: Designing agent incentives to avoid side effects

Consequence of completing the task

Desirable offsetting

Instrumental towards achieving the task

Deviation measure

How much should a deviation from the baseline be penalized?

Deviation measure

How much should a deviation from the baseline be penalized?

Problems with current deviation measures

- Positive, neutral and negative side effects
- ▶ Rollout policy

Positive, neutral and negative side effects

Not all impact is equally negative!

Suboptimal solutions if notion of 'value' is omitted

Optimize reaction path

Tuning regularization magnitude

$$R(s_t) = R_{\text{spec}}(s_t) - \lambda \cdot d(s_t, b(s_0, s_{t-1}, t))$$

Source: Armstrong & Levenstein 2017

Tuning regularization magnitude

$$R(s_t) = R_{\text{spec}}(s_t) - \lambda \cdot d(s_t, b(s_0, s_{t-1}, t))$$

Source: Armstrong & Levenstein 2017

Ways forward

- Causal framing of offsetting
- Probabilities instead of counterfactuals
- Improved Human-Computer interaction

