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Introduction

* DeepFake (Identity Swap) is referred to a deep learning based technique able to create fake
videos by swapping the face of a person by the face of another person [1].
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[1] Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.; and Ortega-Garcia, J. 2020. “DeepFakes and Beyond: A Survey of Face Manipulation and Fake
Detection”. /nformation Fusion 64: 131—148.




Introduction

* Face manipulation techniques: mostly based on AutoEncoders (AE) [2] and Generative
Adversarial Networks (GAN) [3].
* Very realistic visual results: specially in the latest generation of public DeepFakes [4].
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[2] Kingma, D. P; and Welling, M. 2013. “Auto-Encoding Variational Bayes”. In Proc. Int. Cont: on Learning Represent.

[3] Goodfellow, |.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. “Generative Adversarial Nets”. In Proc. Advances
in Neural Information Processing Systems.

[4] Tolosana, R.; Romero-Tapiador, S.; Fierrez, J.; and Vera-Rodriguez, R. 2020. “DeepFakes Evolution: Analysis of Facial Regions and Fake Detection Performance”.
In Proc. International Conference on Fattern Recognition Workshops .



Introduction

* Face Recognition Presentation Attack: using photographs, videos, and masks [5].
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* 3D Masks : somehow similar to DeepFake digital manipulations.
* Physical vs digital mask over the real face.

* Texture and shape-based techniques not efficient against hyperrealistic 3D Masks [6].
* Same with realistic DeepFake methods.
* QOther approaches are necessary => Physiology.

[5] Hernandez-Ortega, J.; Fierrez, J.; Morales, A.; and Galbally, J. 2019. “Introduction to Face Presentation Attack Detection”. In Handabook of Biometric Anti-
Spoofing, 187—206. Springer.

[6] Erdogmus, N.; and Marcel, S. 2014. “Spoofing Face Recognition with 3D Masks”. /££E Transactions on Information Forensics and Security 9(7): 1084—1097.



Introduction

* 3D Masks do not emulate the physiology of human beings [6], i.e. HR, blood oxygen, breath
rate.

* Estimating them is a powerful tool for 3D Masks detection.
°| Do DeepFake manipulations consider the physiological aspects in the synthesis process?
* Detection based on pulse detection = Remote Photoplethysmography [7], used in:

* E-learning [Hernandez-Ortega et a/ 2020].
* Health Care [Mc-Duft ef al 2015].

* Human-Computer Interaction [Tan and Nijholt 2010]. -W—
* Security [Marcel et al 2019].

[7] Hernandez-Ortega, J.; Fierrez, J.; Morales, A.; and Tome, P 2018. “Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR”. In Proc. /EEE Cont. on
Comp. Vision and Pattern Recognition Workshops.




Contributions

* DeepFake detector based on physiological measurement:
* Based on Deep Learning.
* rPPG features pretrained for heart rate estimation.
* Adapted using knowledge transfer.
* |nformation related to the heart rate = or Fake.

* Trained and tested with 2"d generation DeepFake DBs:
* DFDC Preview.
* Celeb-DF v2.

DeepFakesON-Phys = solution to the weaknesses of detectors based on the
visual artifacts and fingerprints inserted during the synthesis process.



DeepFakesON-Phys

Proposed Framework
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DeepFakesON-Phys

Proposed Framework
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DeepFakesON-Phys

Proposed Framework

Motion model: temporal information + attention
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Databases — 2nd Generation

/ Celeb-DF v2 [9] \ / DFDC Preview [10] \

* 590 real (Youtube) * 1,131 real (Actors)
* 5,639 fake videos (Deep Learning) * 4,139 fake videos (Various)

[9] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu. 2020. “Celeb-DF: A LargeScale Challenging Dataset for DeepFake Forensics™. In Proc. /EEE/CVF Conf on Computer
Vision and Pattern Recognition (CVPR).

[10] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C. Ferrer. 2019. “The Deepfake Detection Challenge (DFDC) Preview Dataset”. asXiv
preprint.:1910.08854.



DeepFakesON-Phys: Development

1) Model based on DeepPhys [11] (Heart rate from facial video) = Not public,

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks™. In Procs. of the European Conf on
Computer Vision (ECCV).
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DeepFakesON-Phys: Development

1) Model based on DeepPhys [11] (Heart rate from facial video) = Not public.
2) Own implementation trained with COHFACE DB [12].

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks™. In Procs. of the European Conf on
Computer Vision (ECCV).

[12] ). Hernandez-Ortega, et a/. 2020. “A Comparative Evaluation of Heart Rate Estimation Methods using Face Videos™. In Procs. of the Computers, Software, and
Applications Cont. (COMPSAC).
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DeepFakesON-Phys: Development

1) Model based on DeepPhys [11] (Heart rate from facial video) = Not public.
2) Own implementation trained with COHFACE DB [12].

3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and
eval.
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DeepFakesON-Phys: Development

1) Model based on DeepPhys [11] (Heart rate from facial video) = Not public.
2) Own implementation trained with COHFACE DB [12].

3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and
eval.

4) Changed the last FC and the output layers of the former model (two classes,
real or fake).

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks™. In Procs. of the European Conf on

Computer Vision (ECCV).
[12] ). Hernandez-Ortega, et a/. 2020. “A Comparative Evaluation of Heart Rate Estimation Methods using Face Videos™. In Procs. of the Computers, Software, and

Applications Conft (COMPSAC). 15



DeepFakesON-Phys

DeepFakesON-Phys: Development and Evaluation
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DeepFakesON-Phys: Development

1) Model based on DeepPhys [11] (Heart rate from facial video) = Not public.
2) Own implementation trained with COHFACE DB [12].

3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and
eval.

4) Changed the last FC and the output layers of the former model (two classes,
real or fake).

5) Fixed all weights up to the final fully-connected layer.

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks™. In Procs. of the European Conf on

Computer Vision (ECCV).
[12] ). Hernandez-Ortega, et al. 2020. “A Comparative Evaluation of Heart Rate Estimation Methods using Face Videos™. In Procs. of the Computers, Software, and

Applications Conft (COMPSAC). 17



DeepFakesON-Phys: Development

1) Model based on DeepPhys [11] (Heart rate from facial video) => Not public.
2) Own implementation trained with COHFACE DB [12].
3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and
eval.
4) Changed the last FC and the output layers of the former model (two classes,
real or fake).
5) Fixed all weights up to the final fully-connected layer.
6) Trained the network for 100 more epochs and choose the best performing
model based on validation accuracy.

* One model per training database.

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks™. In Procs. of the European Conf on

Computer Vision (ECCV).
[12] ). Hernandez-Ortega, et a/. 2020. “A Comparative Evaluation of Heart Rate Estimation Methods using Face Videos™. In Procs. of the Computers, Software, and

Applications Cont:. (COMPSAC). 18



Experimental Results

Evaluation Metrics=> Area Under the Curve (AUC) and Accuracy (Frame level).

Celeb-DF v2
Study Method Classifier AUC (%)

Yang, Li, and Lyu 2019 54.6

Li et al. 2020 64.6

Afchar et al. 2018 54.8

Dang et al. 2020 /1.2

Tolosana et al. 2020a 33.6
Qi et al. 2020

Ciftci, Demir, and Yin 2020 Acc. =915

DeepFakesON-Phys [Ours] [Accgz.ggg 7]
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Experimental Results

Evaluation Metrics=> Area Under the Curve (AUC) and Accuracy (Frame level).

DFDC Preview

Study Method Classifier AUC (%)
Yang, Li, and Lyu 2019 55.9
Li et al. 2020 75.5
Afchar et al. 2018 75.3
Dang et al. 2020
Tolosana et al. 2020a 91.1
Qi et al. 2020 Acc. = 64.1

Ciftci, Demir, and Yin 2020

DeepFakesON-Phys [Ours] [Acc92.294 4 ]
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Conclusions

Celeb-DF v2
. Two of the latest and most
Two 2nd generation challenging DeepFake video
DeepFake databases | databases.
DFDC Preview

2

DeepFakesON-Phys:

Outperformed other state-of-the-art fake detectors based on face warping and pure deep learning
features, among others.

Revealed that current DeepFake techniques do not pay attention to the heart-rate-related or blood-
related physiological information.
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Future Work

1. Analysis of the robustness against unseen face manipulations [13].

[13] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., and Ortega-Garcia, J. 2020. “DeepFakes and Beyond: A Survey of Face Manipulation
and Fake Detection”. /nformation Fusion 64: 131—148.
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Future Work

1. Analysis of the robustness against unseen face manipulations [13].
2. Applying temporal integration to frame data [14].
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[13] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., and Ortega-Garcia, J. 2020. “DeepFakes and Beyond: A Survey of Face Manipulation
and Fake Detection”. /nformation Fusion 64: 131—148.

[14] Hernandez-Orteqa, J., Fierrez, J., Morales, A., and Tome, P. 2018. “Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR”. In
Proc. IEEE Cont on Comp. Vision and Pattern Recognition Workshops (CVPRw).
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Future Work

1. Analysis of the robustness against unseen face manipulations [13].
2. Applying temporal integration to frame data [14].

‘ DeepFake Sgores . : DeepFake Scores
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3. Studying other face manipulation techniques, e.g. face morphing [15].
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[13] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., and Ortega-Garcia, J. 2020. “DeepFakes and Beyond: A Survey of Face Manipulation
and Fake Detection”. /nformation Fusion 64: 131—148.

[14] Hernandez-Ortega, J., Fierrez, J., Morales, A., and Tome, P. 2018. “Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR”. In
Proc. IEEE Cont. on Comp. Vision and Pattern Recognition Workshops (CVPRw),

[15] Raja, K., et a/ 2020. “Morphing Attack Detection - Database, Evaluation Platform and Benchmarking”. /E£E Transactions on Information

Forensics and Security. y
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