

Biometrics & Data Pattern Analytics Lab



# **DeepFakesON-Phys: DeepFakes Detection based on Heart Rate Estimation**

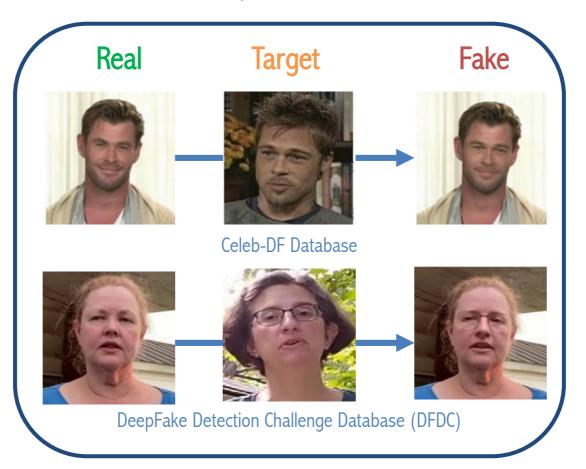




Msc. Javier HERNANDEZ-ORTEGA



Dr. Ruben TOLOSANA




Prof. Julian FIERREZ



Prof. Aythami MORALES

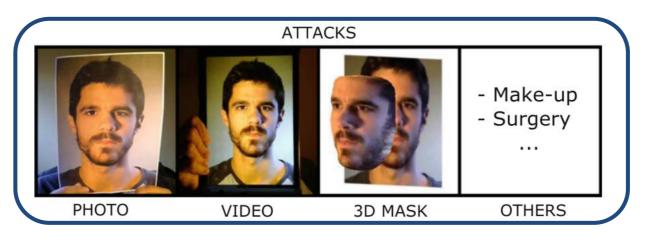
• **DeepFake (Identity Swap)** is referred to a deep learning based technique able to create fake videos by **swapping** the face of a person by the face of another person [1].



[1] Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.; and Ortega-Garcia, J. 2020. "DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection". *Information Fusion* 64: 131–148.

- Face manipulation techniques: mostly based on AutoEncoders (AE) [2] and Generative Adversarial Networks (GAN) [3].
- Very realistic visual results: specially in the latest generation of public DeepFakes [4].




Real Video (Robert de Niro) DeepFake Video (Al Pacino)

[2] Kingma, D. P.; and Welling, M. 2013. "Auto-Encoding Variational Bayes". In Proc. Int. Conf. on Learning Represent.

[3] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. "Generative Adversarial Nets". In *Proc. Advances in Neural Information Processing Systems*.

[4] Tolosana, R.; Romero-Tapiador, S.; Fierrez, J.; and Vera-Rodriguez, R. 2020. "DeepFakes Evolution: Analysis of Facial Regions and Fake Detection Performance". In *Proc. International Conference on Pattern Recognition Workshops*.

• Face Recognition Presentation Attack: using photographs, videos, and masks [5].

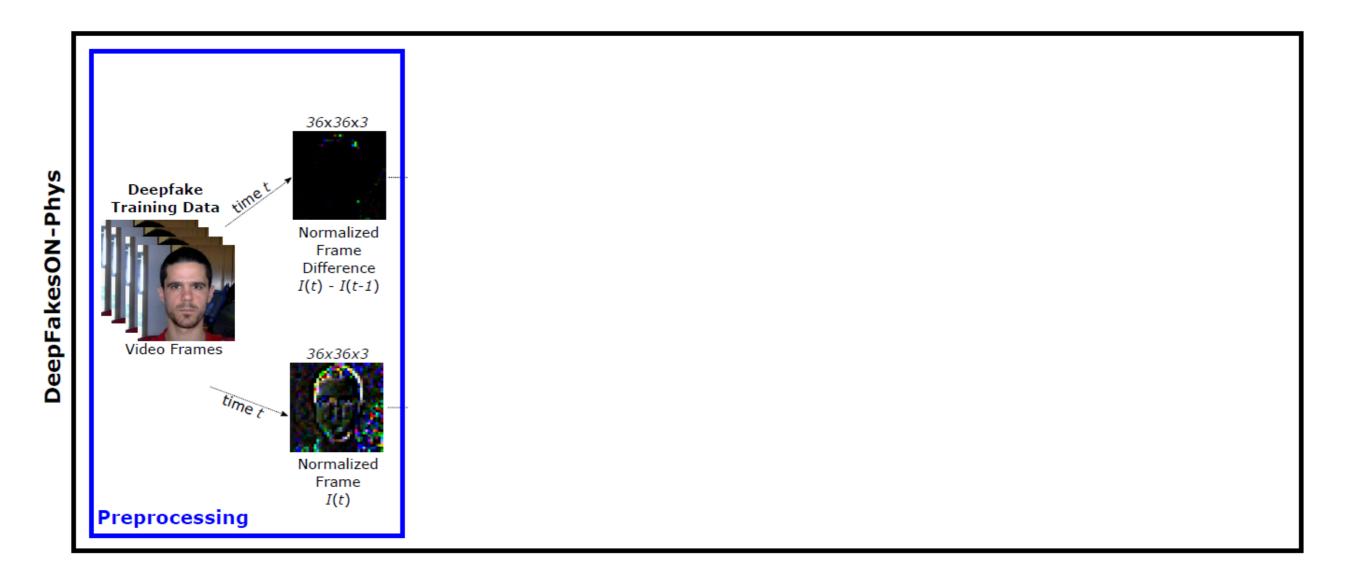


- 3D Masks : somehow similar to DeepFake digital manipulations.
  - Physical vs digital mask over the real face.
- Texture and shape-based techniques not efficient against hyperrealistic 3D Masks [6].
  - Same with realistic DeepFake methods.
  - Other approaches are necessary  $\rightarrow$  Physiology.

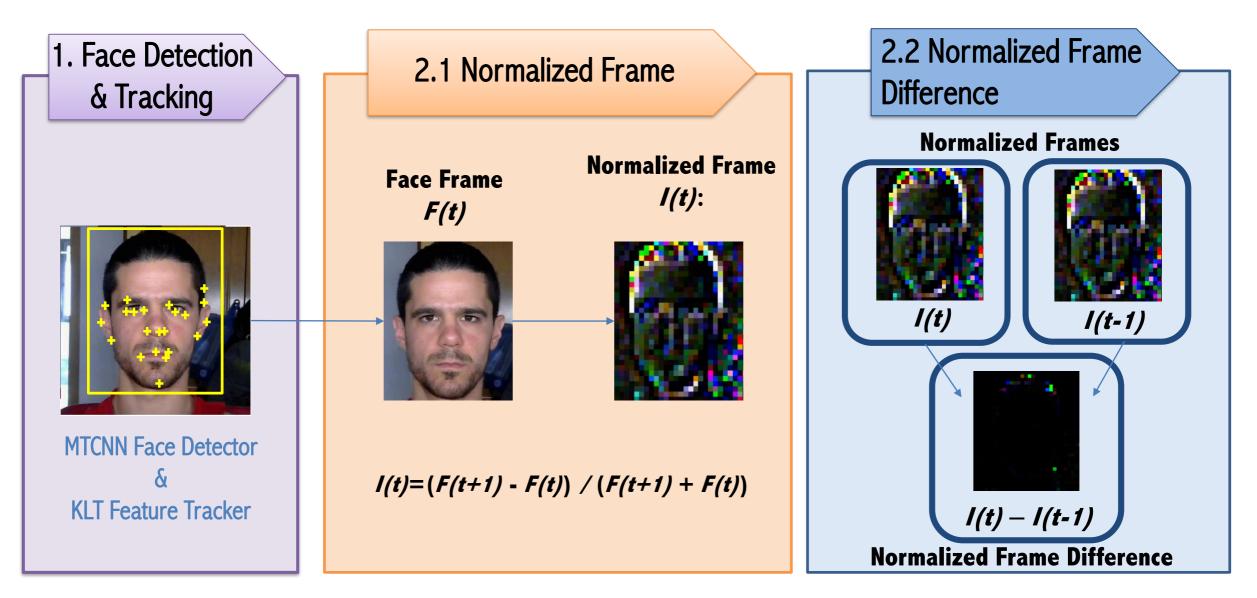
[5] Hernandez-Ortega, J.; Fierrez, J.; Morales, A.; and Galbally, J. 2019. "Introduction to Face Presentation Attack Detection". In *Handbook of Biometric Anti-Spoofing*, 187–206. Springer.
[6] Erdogmus, N.; and Marcel, S. 2014. "Spoofing Face Recognition with 3D Masks". *IEEE Transactions on Information Forensics and Security* 9(7): 1084–1097.

- **3D Masks do not emulate the physiology of human beings** [6], i.e. HR, blood oxygen, breath rate.
  - Estimating them is a powerful tool for 3D Masks detection.
- Do DeepFake manipulations consider the physiological aspects in the synthesis process?
- Detection based on pulse detection  $\rightarrow$  Remote Photoplethysmography [7], used in:
  - E-learning [Hernandez-Ortega *et al.* 2020].
  - Health Care [Mc-Duff *et al.* 2015].
  - Human-Computer Interaction [Tan and Nijholt 2010].
  - Security [Marcel et al. 2019].

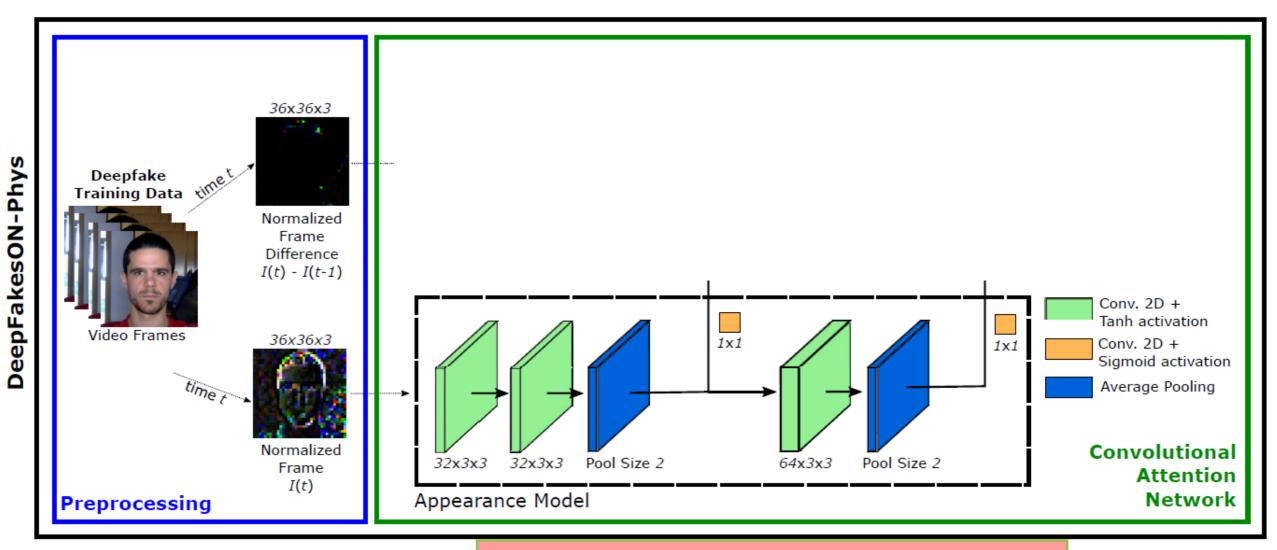



[7] Hernandez-Ortega, J.; Fierrez, J.; Morales, A.; and Tome, P. 2018. "Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR". In *Proc. IEEE Conf. on Comp. Vision and Pattern Recognition Workshops*.

# Contributions

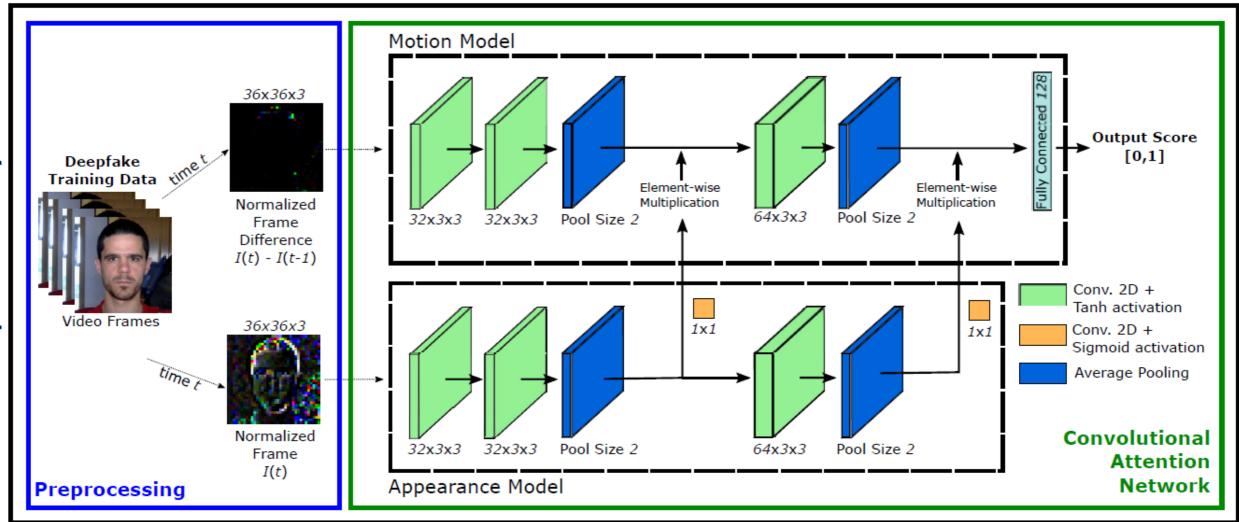

- DeepFake detector based on physiological measurement: DeepFakesON-Phys.
  - Based on Deep Learning.
  - rPPG features pretrained for heart rate estimation.
  - Adapted using knowledge transfer.
  - Information related to the heart rate  $\rightarrow$  Real or Fake.
- Trained and tested with 2<sup>nd</sup> generation DeepFake DBs:
  - DFDC Preview.
  - Celeb-DF v2.

**DeepFakesON-Phys**  $\rightarrow$  solution to the weaknesses of detectors based on the visual artifacts and fingerprints inserted during the synthesis process.


# **Proposed Framework**



# Preprocessing



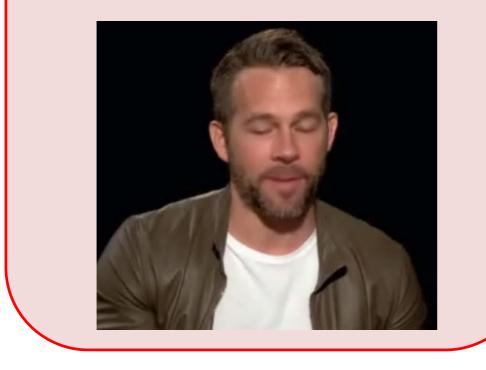

## **Proposed Framework**



**Appearance model:** static information → Attention

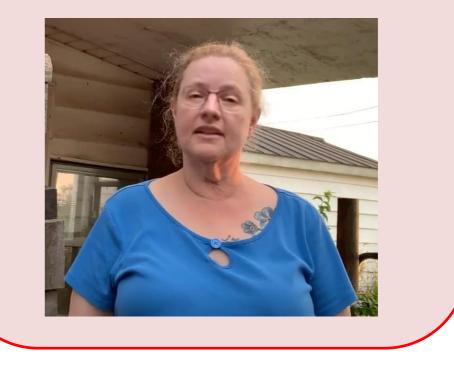
## **Proposed Framework**




**Motion model:** temporal information + attention

**Appearance model:** static information  $\rightarrow$  Attention

## **Databases – 2nd Generation**


#### Celeb-DF v2 [9]

- 590 real (Youtube)
- 5,639 fake videos (Deep Learning)



#### **DFDC Preview** [10]

- 1,131 real (Actors)
- 4,139 fake videos (Various)

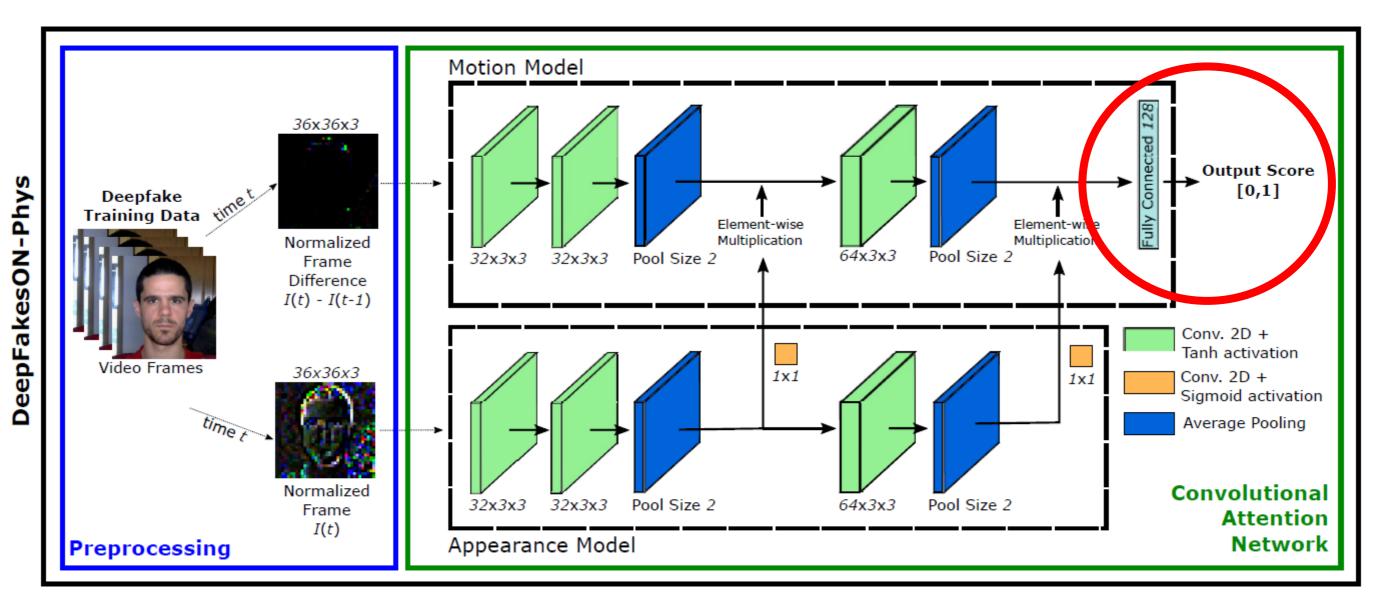


[9] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu. 2020. "Celeb-DF: A LargeScale Challenging Dataset for DeepFake Forensics". In *Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR).*[10] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C. Ferrer. 2019. "The Deepfake Detection Challenge (DFDC) Preview Dataset". arXiv preprint.:1910.08854.

1) Model based on DeepPhys [11] (Heart rate from facial video)  $\rightarrow$  Not public.

[11] W. Chen, and D. McDuff. 2018. "Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks". In Procs. of the European Conf. on Computer Vision (ECCV).

1) Model based on DeepPhys [11] (Heart rate from facial video)  $\rightarrow$  Not public. 2) Own implementation trained with COHFACE DB [12].


1) Model based on DeepPhys [11] (Heart rate from facial video)  $\rightarrow$  Not public. 2) Own implementation trained with COHFACE DB [12]. 3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and eval.

1) Model based on DeepPhys [11] (Heart rate from facial video)  $\rightarrow$  Not public. 2) Own implementation trained with COHFACE DB [12].

3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and eval.

4) Changed the last FC and the output layers of the former model (two classes, real or fake).

## **DeepFakesON-Phys: Development and Evaluation**



- 1) Model based on DeepPhys [11] (Heart rate from facial video)  $\rightarrow$  Not public. 2) Own implementation trained with COHFACE DB [12].
- 3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and eval.
- 4) Changed the last FC and the output layers of the former model (two classes, real or fake).
- 5) Fixed all weights up to the final fully-connected layer.

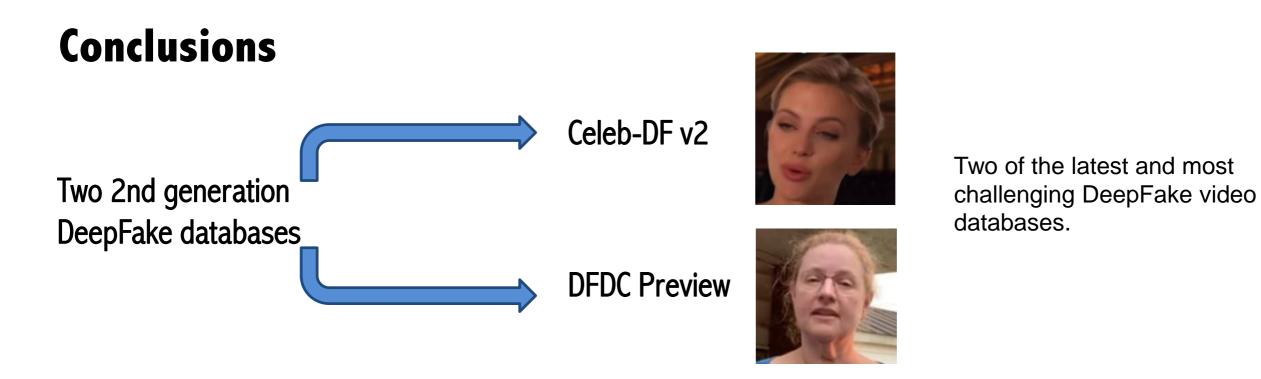
- 1) Model based on DeepPhys [11] (Heart rate from facial video)  $\rightarrow$  Not public. 2) Own implementation trained with COHFACE DB [12].
- 3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and eval.
- 4) Changed the last FC and the output layers of the former model (two classes, real or fake).
- 5) Fixed all weights up to the final fully-connected layer.
- 6) Trained the network for 100 more epochs and choose the best performing model based on validation accuracy.
  - One model per training database.

<sup>[11]</sup> W. Chen, and D. McDuff. 2018. "Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks". In Procs. of the European Conf. on Computer Vision (ECCV).
[12] J. Hernandez-Ortega, et al. 2020. "A Comparative Evaluation of Heart Rate Estimation Methods using Face Videos". In Procs. of the Computers, Software, and Applications Conf. (COMPSAC).

## **Experimental Results**

**Evaluation Metrics**  $\rightarrow$  Area Under the Curve (AUC) and Accuracy (Frame level).

| Study                         | Method        | Classifier      | AUC (%)             |
|-------------------------------|---------------|-----------------|---------------------|
| Yang, Li, and Lyu 2019        | Head Pose     | SVM             | 54.6                |
| Li <i>et al</i> . 2020        | Face Warping  | CNN             | 64.6                |
| Afchar <i>et al</i> . 2018    | Mesoscopic    | CNN             | 54.8                |
| Dang <i>et al</i> . 2020      | Deep Learning | CNN + Attention | 71.2                |
| Tolosana <i>et al</i> . 2020a | Deep Learning | CNN             | 83.6                |
| Qi <i>et al</i> . 2020        | Physiological | CNN + Attention | -                   |
| Ciftci, Demir, and Yin 2020   | Physiological | SVM/CNN         | Acc. = 91.5         |
| DeepFakesON-Phys [Ours]       | Physiological | CNN + Attention | 99.9<br>Acc. = 98.7 |


#### Celeb-DF v2

## **Experimental Results**

**Evaluation Metrics**  $\rightarrow$  Area Under the Curve (AUC) and Accuracy (Frame level).

| Study                         | Method        | Classifier      | AUC (%)               |
|-------------------------------|---------------|-----------------|-----------------------|
| Yang, Li, and Lyu 2019        | Head Pose     | SVM             | 55.9                  |
| Li <i>et al</i> . 2020        | Face Warping  | CNN             | 75.5                  |
| Afchar <i>et al</i> . 2018    | Mesoscopic    | CNN             | 75.3                  |
| Dang <i>et al</i> . 2020      | Deep Learning | CNN + Attention | -                     |
| Tolosana <i>et al</i> . 2020a | Deep Learning | CNN             | 91.1                  |
| Qi <i>et al</i> . 2020        | Physiological | CNN + Attention | Acc. = 64.1           |
| Ciftci, Demir, and Yin 2020   | Physiological | SVM/CNN         | -                     |
| DeepFakesON-Phys [Ours]       | Physiological | CNN + Attention | 98.2<br>Acc. = $94.4$ |

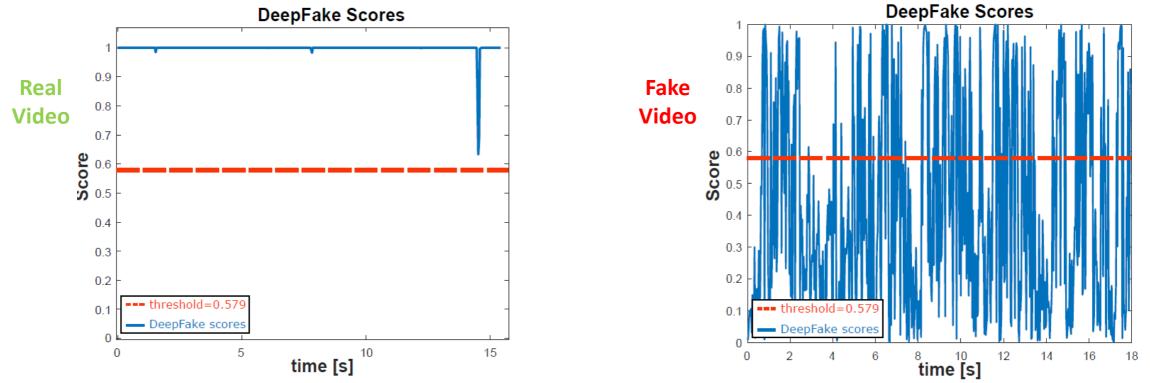
#### **DFDC Preview**



#### DeepFakesON-Phys:

**Outperformed** other **state-of-the-art fake detectors** based on <u>face warping and pure deep learning</u> <u>features</u>, among others.

Revealed that **current DeepFake techniques do not pay attention to** the heart-rate-related or bloodrelated **physiological information**.

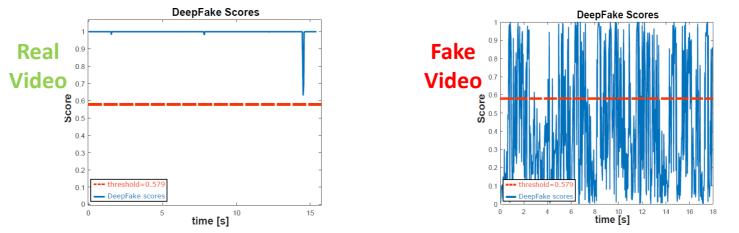

## **Future Work**

1. Analysis of the robustness against unseen face manipulations [13].

[13] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., and Ortega-Garcia, J. 2020. "DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection". *Information Fusion* 64: 131–148.

## **Future Work**

- 1. Analysis of the robustness against unseen face manipulations [13].
- 2. Applying temporal integration to frame data [14].




[13] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., and Ortega-Garcia, J. 2020. "DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection". Information Fusion 64: 131–148.

[14] Hernandez-Ortega, J., Fierrez, J., Morales, A., and Tome, P. 2018. "Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR". In *Proc. IEEE Conf. on Comp. Vision and Pattern Recognition Workshops (CVPRw).* 

## **Future Work**

- 1. Analysis of the robustness against unseen face manipulations [13].
- 2. Applying temporal integration to frame data [14].



#### 3. Studying other face manipulation techniques, e.g. face morphing [15].

[13] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., and Ortega-Garcia, J. 2020. "DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection". *Information Fusion* 64: 131–148.

[14] Hernandez-Ortega, J., Fierrez, J., Morales, A., and Tome, P. 2018. "Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR". In *Proc. IEEE Conf. on Comp. Vision and Pattern Recognition Workshops (CVPRw).* 

[15] Raja, K., *et al.* 2020. "Morphing Attack Detection - Database, Evaluation Platform and Benchmarking". *IEEE Transactions on Information Forensics and Security.* 



Biometrics & Data Pattern Analytics Lab

#### Know More:



R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales and J. Ortega-Garcia, "DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection", *Information Fusion*, 2020.

J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, H. Proenca and J. Fierrez, "GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection", *IEEE Journal of Selected Topics in Signal Processing*, 2020.

J. Hernandez-Ortega, et al. "Time Analysis of Pulse-based Face Anti-spoofing in Visible and NIR". In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018.

J. Hernandez-Ortega, et al. "Introduction to Face Presentation Attack Detection." Handbook of Biometric Anti-Spoofing. Springer. 2019.

#### http://biometrics.eps.uam.es

**Funding:** This work has been supported by projects: IDEA-FAST (IMI2-2018-15-two-stage-853981), PRIMA (ITN-2019-860315), TRESPASS-ETN (ITN-2019-860813), BIBECA (RTI2018-101248-B-I00 MINECO/FEDER), and edBB (Universidad Autonoma de Madrid, UAM). J. H.-O. is supported by a PhD fellowship from UAM. R. T. is supported by a Postdoctoral fellowship from CAM/FSE.





