
DeepFakesON-Phys: 

DeepFakes Detection based on Heart Rate Estimation

Dr. Ruben 

TOLOSANA

Msc. Javier  

HERNANDEZ-ORTEGA

Prof. Julian

FIERREZ 

Prof. Aythami

MORALES

BiDA Lab
Biometrics & Data Pattern Analytics Lab



• DeepFake (Identity Swap) is referred to a deep learning based technique able to create fake 

videos by swapping the face of  a person by the face of  another person [1].

Real Target Fake

DeepFake Detection Challenge Database (DFDC)

Celeb-DF Database

[1] Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.; and Ortega-Garcia, J. 2020. “DeepFakes and Beyond: A Survey of  Face Manipulation and Fake 

Detection”. Information Fusion 64: 131–148.

Introduction

2



• Face manipulation techniques: mostly based on AutoEncoders (AE) [2] and Generative 

Adversarial Networks (GAN) [3]. 

• Very realistic visual results: specially in the latest generation of  public DeepFakes [4].

[2] Kingma, D. P.; and Welling, M. 2013. “Auto-Encoding Variational Bayes”. In Proc. Int. Conf. on Learning Represent.
[3] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. “Generative Adversarial Nets”. In Proc. Advances
in Neural Information Processing Systems.

[4] Tolosana, R.; Romero-Tapiador, S.; Fierrez, J.; and Vera-Rodriguez, R. 2020. “DeepFakes Evolution: Analysis of  Facial Regions and Fake Detection Performance”.

In Proc. International Conference on Pattern Recognition Workshops .
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Real Video

(Robert de Niro)

DeepFake Video

(Al Pacino)
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• Face Recognition Presentation Attack: using photographs, videos, and masks [5].

• 3D Masks : somehow similar to DeepFake digital manipulations.

• Physical vs digital mask over the real face.

• Texture and shape-based techniques not efficient against hyperrealistic 3D Masks [6].

• Same with realistic DeepFake methods.

• Other approaches are necessary  Physiology.

[5] Hernandez-Ortega, J.; Fierrez, J.; Morales, A.; and Galbally, J. 2019. “Introduction to Face Presentation Attack Detection”. In Handbook of  Biometric Anti-
Spoofing, 187–206. Springer.

[6] Erdogmus, N.; and Marcel, S. 2014. “Spoofing Face Recognition with 3D Masks”. IEEE Transactions on Information Forensics and Security 9(7): 1084–1097.
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• 3D Masks do not emulate the physiology of  human beings [6], i.e. HR, blood oxygen, breath 

rate.

• Estimating them is a powerful tool for 3D Masks detection.

• Do DeepFake manipulations consider the physiological aspects in the synthesis process?

• Detection based on pulse detection Remote Photoplethysmography [7], used in:

• E-learning [Hernandez-Ortega et al. 2020].

• Health Care [Mc-Duff  et al. 2015].

• Human-Computer Interaction [Tan and Nijholt 2010].

• Security [Marcel et al. 2019].

[7] Hernandez-Ortega, J.; Fierrez, J.; Morales, A.; and Tome, P. 2018. “Time Analysis of  Pulse-Based Face Anti-Spoofing in Visible and NIR”. In Proc. IEEE Conf. on 
Comp. Vision and Pattern Recognition Workshops.
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• DeepFake detector based on physiological measurement: DeepFakesON-Phys.

• Based on Deep Learning.

• rPPG features pretrained for heart rate estimation.

• Adapted using knowledge transfer.

• Information related to the heart rate  Real or Fake.

• Trained and tested with 2nd generation DeepFake DBs: 

• DFDC Preview.

• Celeb-DF v2.

DeepFakesON-Phys solution to the weaknesses of  detectors based on the 

visual artifacts and fingerprints inserted during the synthesis process.

Contributions
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Proposed Framework
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1. Face Detection 

& Tracking

Preprocessing

2.1 Normalized Frame
2.2 Normalized Frame 

Difference

Normalized Frames

Normalized Frame Difference

MTCNN Face Detector

&

KLT Feature Tracker

Normalized Frame 

I(t):

I(t) I(t-1)

Face Frame 

F(t)

I(t) – I(t-1)

I(t)=(F(t+1) - F(t)) / (F(t+1) + F(t)) 
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Proposed Framework

Appearance model: static information Attention
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Proposed Framework

Appearance model: static information Attention

Motion model: temporal information + attention
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Databases – 2nd Generation

• 590 real (Youtube)

• 5,639 fake videos (Deep Learning) 

Celeb-DF v2 [9]

• 1,131 real (Actors)

• 4,139 fake videos (Various)

DFDC Preview [10]

[9] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu. 2020. “Celeb-DF: A LargeScale Challenging Dataset for DeepFake Forensics”. In Proc. IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR).

[10] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C. Ferrer. 2019. “The Deepfake Detection Challenge (DFDC) Preview Dataset”. arXiv
preprint.:1910.08854.
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DeepFakesON-Phys: Development

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks”. In Procs. of  the European Conf. on 
Computer Vision (ECCV).

1) Model based on DeepPhys [11] (Heart rate from facial video)  Not public.
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DeepFakesON-Phys: Development

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks”. In Procs. of  the European Conf. on 
Computer Vision (ECCV).

[12] J. Hernandez-Ortega, et al. 2020. “A Comparative Evaluation of  Heart Rate Estimation Methods using Face Videos”. In Procs. of  the Computers, Software, and 
Applications Conf. (COMPSAC).

1) Model based on DeepPhys [11] (Heart rate from facial video)  Not public.

2) Own implementation trained with COHFACE DB [12].

13



DeepFakesON-Phys: Development
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DeepFakesON-Phys: Development

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks”. In Procs. of  the European Conf. on 
Computer Vision (ECCV).

[12] J. Hernandez-Ortega, et al. 2020. “A Comparative Evaluation of  Heart Rate Estimation Methods using Face Videos”. In Procs. of  the Computers, Software, and 
Applications Conf. (COMPSAC).

1) Model based on DeepPhys [11] (Heart rate from facial video)  Not public.

2) Own implementation trained with COHFACE DB [12].

3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and 

eval.

4) Changed the last FC and the output layers of  the former model (two classes, 

real or fake).
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DeepFakesON-Phys: Development and Evaluation
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DeepFakesON-Phys: Development

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks”. In Procs. of  the European Conf. on 
Computer Vision (ECCV).

[12] J. Hernandez-Ortega, et al. 2020. “A Comparative Evaluation of  Heart Rate Estimation Methods using Face Videos”. In Procs. of  the Computers, Software, and 
Applications Conf. (COMPSAC).

1) Model based on DeepPhys [11] (Heart rate from facial video)  Not public.

2) Own implementation trained with COHFACE DB [12].

3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and 

eval.

4) Changed the last FC and the output layers of  the former model (two classes, 

real or fake).

5) Fixed all weights up to the final fully-connected layer.
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DeepFakesON-Phys: Development

[11] W. Chen, and D. McDuff. 2018. “Deepphys: Video-based Physiological Measurement using Convolutional Attention Networks”. In Procs. of  the European Conf. on 
Computer Vision (ECCV).

[12] J. Hernandez-Ortega, et al. 2020. “A Comparative Evaluation of  Heart Rate Estimation Methods using Face Videos”. In Procs. of  the Computers, Software, and 
Applications Conf. (COMPSAC).

1) Model based on DeepPhys [11] (Heart rate from facial video)  Not public.

2) Own implementation trained with COHFACE DB [12].

3) Celeb-DF v2 and DFDC Preview split into 2 non-overlapping datasets: dev. and 

eval.

4) Changed the last FC and the output layers of  the former model (two classes, 

real or fake).

5) Fixed all weights up to the final fully-connected layer.

6) Trained the network for 100 more epochs and choose the best performing 

model based on validation accuracy.

• One model per training database.

18



Experimental Results

Study Method Classifier AUC (%)

Yang, Li, and Lyu 2019 Head Pose SVM 54.6

Li et al. 2020 Face Warping CNN 64.6

Afchar et al. 2018 Mesoscopic CNN 54.8

Dang et al. 2020 Deep Learning CNN + Attention 71.2

Tolosana et al. 2020a Deep Learning CNN 83.6

Qi et al. 2020 Physiological CNN + Attention -

Ciftci, Demir, and Yin 2020 Physiological SVM/CNN Acc. = 91.5

DeepFakesON-Phys [Ours] Physiological CNN + Attention
99.9

Acc. = 98.7

Celeb-DF v2

Evaluation Metrics Area Under the Curve (AUC) and Accuracy (Frame level).
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Experimental Results

Study Method Classifier AUC (%)

Yang, Li, and Lyu 2019 Head Pose SVM 55.9

Li et al. 2020 Face Warping CNN 75.5

Afchar et al. 2018 Mesoscopic CNN 75.3

Dang et al. 2020 Deep Learning CNN + Attention -

Tolosana et al. 2020a Deep Learning CNN 91.1

Qi et al. 2020 Physiological CNN + Attention Acc. = 64.1

Ciftci, Demir, and Yin 2020 Physiological SVM/CNN -

DeepFakesON-Phys [Ours] Physiological CNN + Attention
98.2

Acc. = 94.4

DFDC Preview

Evaluation Metrics Area Under the Curve (AUC) and Accuracy (Frame level).
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Conclusions

Celeb-DF v2

DFDC Preview

Two 2nd generation 

DeepFake databases

DeepFakesON-Phys:

Outperformed other state-of-the-art fake detectors based on face warping and pure deep learning 

features, among others.

Revealed that current DeepFake techniques do not pay attention to the heart-rate-related or blood-

related physiological information.

Two of the latest and most

challenging DeepFake video 

databases.
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Future Work

1. Analysis of the robustness against unseen face manipulations [13].

[13] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., and Ortega-Garcia, J. 2020. “DeepFakes and Beyond: A Survey of  Face Manipulation 

and Fake Detection”. Information Fusion 64: 131–148.

22



Future Work

1. Analysis of the robustness against unseen face manipulations [13].

2. Applying temporal integration to frame data [14].

[13] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., and Ortega-Garcia, J. 2020. “DeepFakes and Beyond: A Survey of  Face Manipulation 

and Fake Detection”. Information Fusion 64: 131–148.

[14] Hernandez-Ortega, J., Fierrez, J., Morales, A., and Tome, P. 2018. “Time Analysis of  Pulse-Based Face Anti-Spoofing in Visible and NIR”. In 

Proc. IEEE Conf. on Comp. Vision and Pattern Recognition Workshops (CVPRw).

Real
Video

Fake
Video
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Future Work

1. Analysis of the robustness against unseen face manipulations [13].

2. Applying temporal integration to frame data [14].

3. Studying other face manipulation techniques, e.g. face morphing [15].

[13] Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., and Ortega-Garcia, J. 2020. “DeepFakes and Beyond: A Survey of  Face Manipulation 

and Fake Detection”. Information Fusion 64: 131–148.

[14] Hernandez-Ortega, J., Fierrez, J., Morales, A., and Tome, P. 2018. “Time Analysis of  Pulse-Based Face Anti-Spoofing in Visible and NIR”. In 

Proc. IEEE Conf. on Comp. Vision and Pattern Recognition Workshops (CVPRw).

[15] Raja, K., et al. 2020. “Morphing Attack Detection - Database, Evaluation Platform and Benchmarking”. IEEE Transactions on Information 
Forensics and Security.

Real
Video

Fake
Video

24



BiDA Lab
Biometrics & Data Pattern Analytics Lab

Know More:

R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales and J. Ortega-Garcia, "DeepFakes and Beyond: A Survey of Face Manipulation
and Fake Detection", Information Fusion, 2020.

J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, H. Proenca and J. Fierrez, "GANprintR: Improved Fakes and Evaluation of the 
State of the Art in Face Manipulation Detection", IEEE Journal of Selected Topics in Signal Processing, 2020.

J. Hernandez-Ortega, et al. "Time Analysis of Pulse-based Face Anti-spoofing in Visible and NIR“. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition Workshops. 2018.

J. Hernandez-Ortega, et al. "Introduction to Face Presentation Attack Detection." Handbook of Biometric Anti-Spoofing. 
Springer. 2019. 
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