

Deep CPT-RL: Imparting Human-Like Risk Sensitivity to Artificial Agents

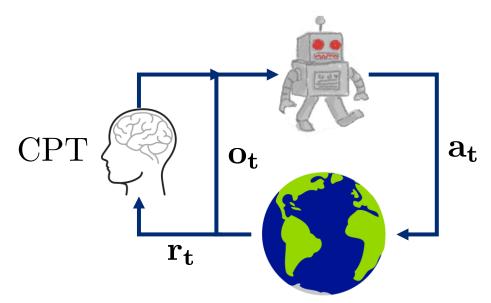
Jared Markowitz, Marie Chau, I-Jeng Wang

SafeAl 2021

February 8, 2021

Motivation and Background

- One contributor to unsafe AI is its clumsy, non-human handling of risk:
 - It does not properly consider rare but potentially catastrophic outcomes
 - It does not asymmetrically value losses and gains
- Cumulative Prospect Theory (CPT) [1, 2] is a leading empirical model of human risk-processing from behavioral economics.
- We seek to incorporate CPT into deep RL, producing agents that process risk more intelligently.



Methods

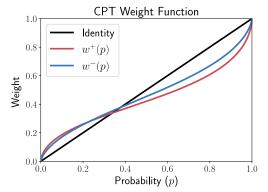
Standard RL

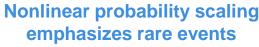
$$\max_{\theta \in \Theta} \int r(\tau) p_{\theta}(\tau) d\tau$$

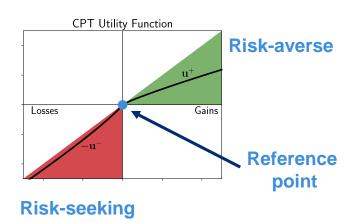
- A single (often convex) reward function makes it difficult to enact risk-sensitive strategies
- Unweighted averaging means rare events have minimal impact (regardless of consequences)

CPT-RL

$$\max_{\theta \in \Theta} \left[\int \left(-u^{-}(r) \frac{d}{dr} (w^{-}(P_{\theta}(r))) + u^{+}(r) \frac{d}{dr} (-w^{+}(1 - P_{\theta}(r))) \right) dr \right]$$

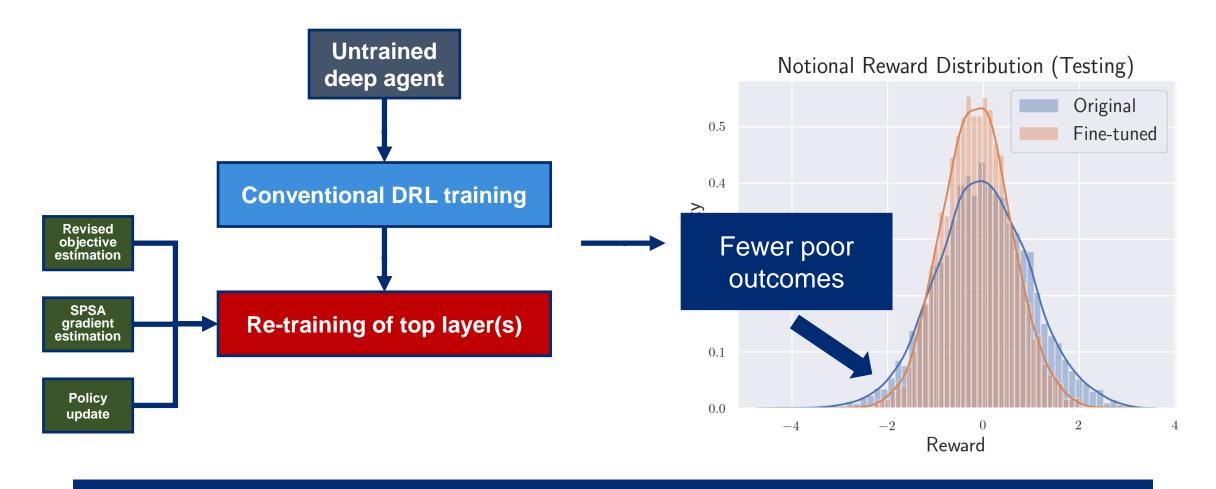






- We build on work [3] from UMD that allows agents to optimize the CPT value instead of expected reward.
 - The UMD method does not apply to *deep* networks.
- We introduce Deep CPT-RL, a method for fine-tuning trained DRL networks [4] to optimize CPT value.
- Our method allows other distributional shaping strategies (e.g. Conditional Value at Risk (CVaR)).

A Two-Stage Approach to Modifying Reward Distributions



We seek to shift the distribution of outcomes in order to mitigate negative outcomes.

CPT Value Estimation [3]

Algorithm 1 CPT-value estimation for Hölder continuous weights

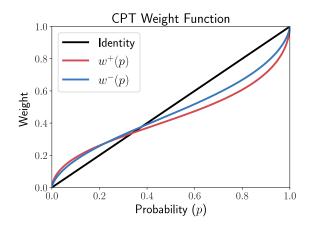
- 1: Simulate n i.i.d. samples from the distribution of X.
- 2: Order the samples and label them as follows: $X_{[1]}, X_{[2]}, \ldots, X_{[n]}$. Note that $u^+(X_{[1]}), \ldots, u^+(X_{[n]})$ are also in ascending order.
- 3: Let

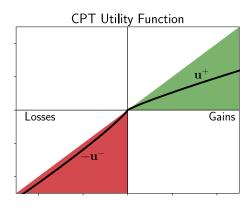
$$\overline{\mathbb{C}}_n^+ := \sum_{i=1}^n u^+(X_{[i]}) \left(w^+ \left(\frac{n+1-i}{n} \right) - w^+ \left(\frac{n-i}{n} \right) \right).$$

- 4: Apply u^- on the sequence $\{X_{[1]}, X_{[2]}, \ldots, X_{[n]}\}$; notice that $u^-(X_{[i]})$ is in descending order since u^- is a decreasing function.
- 5: Let

$$\overline{\mathbb{C}}_n^- := \sum_{i=1}^n u^-(X_{[i]}) \left(w^- \left(\frac{i}{n} \right) - w^- \left(\frac{i-1}{n} \right) \right).$$

6: Return $\overline{\mathbb{C}}_n = \overline{\mathbb{C}}_n^+ - \overline{\mathbb{C}}_n^-$.





> This procedure allows a numerical estimation of CPT value via sampling.

Simultaneous Perturbation Stochastic Approximation

- SPSA [5] is an efficient method for numerical gradient estimation.
- Simultaneously perturbs each parameter, rather than doing them one at a time (as in finite differences (FDSA)).
- Gives more noisy but much more efficient gradient estimates.
- Gradient Estimation:

$$\hat{\nabla}_i \mathcal{C}(X^{\theta}) = \frac{\bar{\mathcal{C}}_n^{\theta_n + \delta_n \Delta_n} - \bar{\mathcal{C}}_n^{\theta_n - \delta_n \Delta_n}}{2\delta_n \Delta_n^i}$$

Parameter Update:

$$\theta_{n+1}^i = \theta_n^i + \gamma_n \hat{\nabla}_i \mathcal{C}(X^{\theta_n})$$

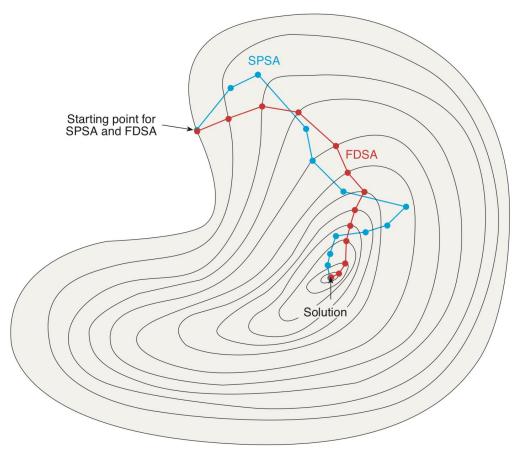
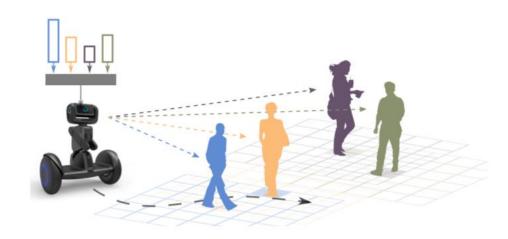


Figure Credit: [5]

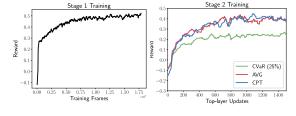
Crowd Navigation Simulation

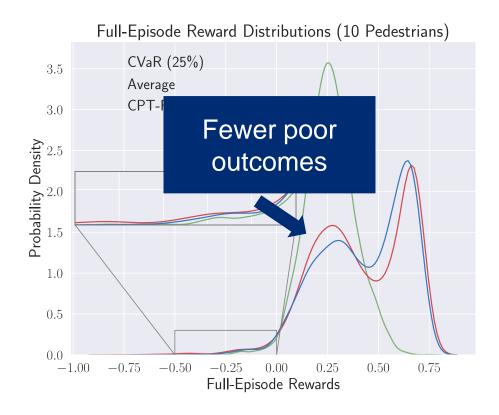
- In the CrowdSim environment [6], a single robot navigates from a starting location to a goal location, trying to avoid people who are passing through.
- The people in the simulation proceed from randomized starting points to randomized goal points, trying to avoid collisions with each other.
- In our configuration, the robot is invisible to the people and the episode ends when a collision occurs.
- Here, risk is measured in the willingness of the agent to risk collisions in the pursuit of speed.

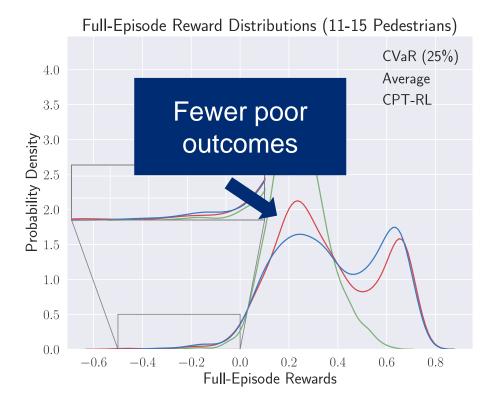


$$r(t) = C_{\text{progress}} (d_{\text{goal}}(t-1) - d_{\text{goal}}(t)) - C_{\text{time}}$$

Results







	Rewards, 10 Pedestrians			Rewards, 11-15 Pedestrians		
Method	Mean	Median	0.01-quantile	Mean	Median	0.01-quantile
CVaR	0.262 ± 0.002	0.260	-0.029	0.239 ± 0.002	0.232	-0.020
AVG	0.418 ± 0.003	0.414	-0.172	0.358 ± 0.003	0.320	-0.066
CPT	0.432 ± 0.003	0.461	-0.085	0.375 ± 0.003	0.360	-0.123

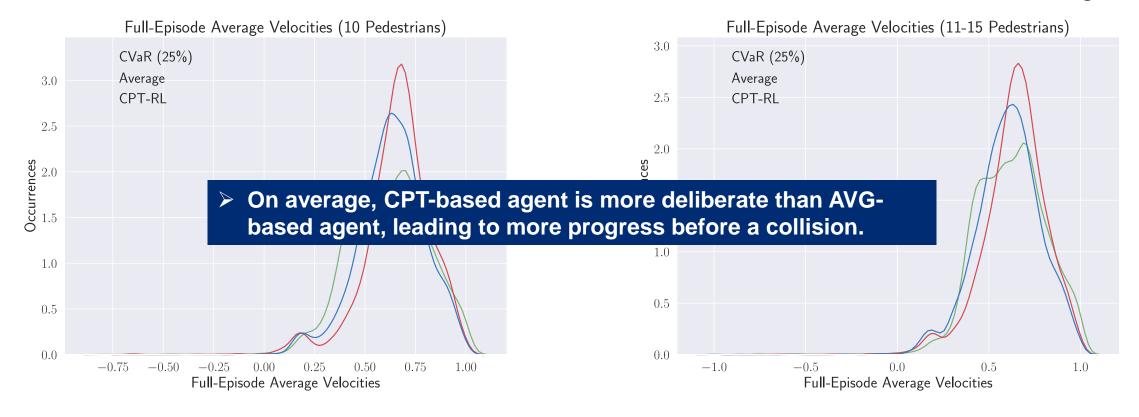
Quantitatively Different Behavior

 $p(t) = d_{\text{robot to goal}}(t) - d_{\text{robot to goal}}(0)$

Episode time:

Episode progress: p(T)

Episode velocity: $\frac{p(T)}{T}$

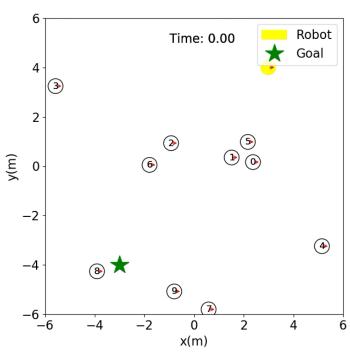


	10 Pedestrians			11-15 Pedestrians		
Method	Progress	Time	Velocity	Progress	Time	Velocity
CVaR	4.35 ± 0.03	8.61 ± 0.10	0.617 ± 0.003	3.81 ± 0.03	7.14 ± 0.08	0.621 ± 0.003
AVG	6.23 ± 0.04	10.26 ± 0.09	0.661 ± 0.002	5.39 ± 0.04	9.07 ± 0.09	0.640 ± 0.002
CPT	6.63 ± 0.04	11.52 ± 0.10	0.631 ± 0.002	5.86 ± 0.04	10.55 ± 0.10	0.605 ± 0.002

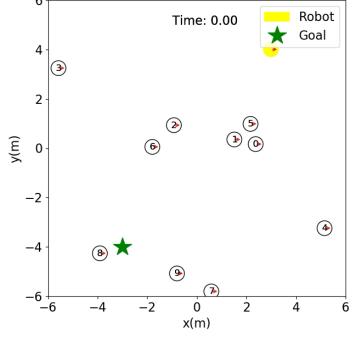
Illustrative Example 1

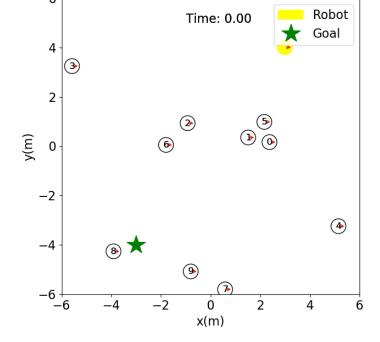
 $r(t) = C_{\text{progress}} \left(d_{\text{goal}}(t-1) - d_{\text{goal}}(t) \right) - C_{\text{time}}$

Avoiding an early crash



AVG CVaR(25%)



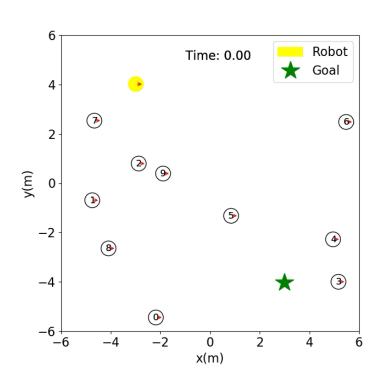


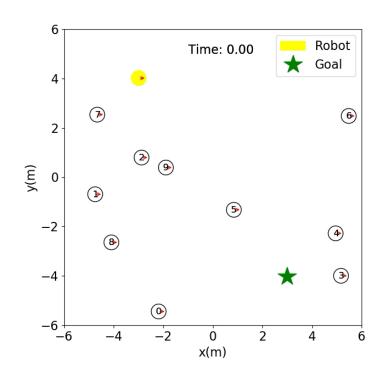
CPT

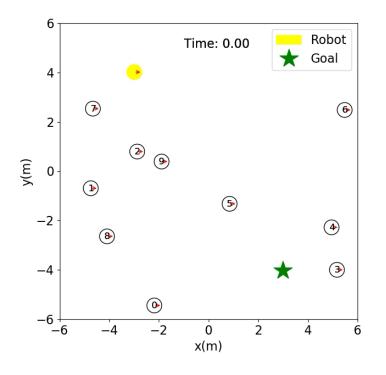
Illustrative Example 2

 $r(t) = C_{\text{progress}} \left(d_{\text{goal}}(t-1) - d_{\text{goal}}(t) \right) - C_{\text{time}}$

Reaching the goal







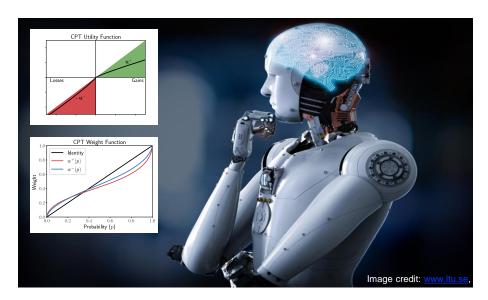
AVG

CVaR(25%)

CPT

Summary and Future Work

- We have developed a method for modifying the distribution of outcomes for DRL agents.
- Our approach allows for optimization of quantities beyond expected reward.
- Agents trained to maximize CPT value demonstrate quantitatively different behavior than those trained to maximize average total reward.
- Areas of current and future research include
 - Methods for making this learning more robust
 - Exploration of behaviors induced by different distributional objectives
 - Application to more complex and realistic environments



Work supported by APL IRAD and the Johns Hopkins Institute for Assured Autonomy (IAA)

References

- [1] Daniel Kahneman and Amos Tversky. "Prospect Theory: An Analysis of Decision under Risk" *Econometrica* Vol. 47 No. 2 pp. 263-291 (1979).
- [2] Amos Tversky and Daniel Kahneman. "Advances in prospect theory: Cumulative representation of uncertainty" *Journal of Risk and Uncertainty* Volume 5, Issue 4, pp. 297-323 (1992).
- [3] Prashanth L.A. et al. "Cumulative Prospect Theory Meets Reinforcement Learning: Prediction and Control" *ICML* (2016).
- [4] J. Schulman et al. "Proximal Policy Optimization Algorithms" arXiv:1707.06347.
- [5] James Spall, "An Overview of the Simultaneous Perturbation Method for Efficient Optimization" *Johns Hopkins APL Technical Digest* Volume 19, Number 4 (1998).
- [6] Changan Chen et al. "Crowd-Robot Interaction: Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning" *ICRA* (2019).

