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Motivation and Background

« One contributor to unsafe Al is its clumsy, non-human handling of risk:
- It does not properly consider rare but potentially catastrophic outcomes
- It does not asymmetrically value losses and gains

« Cumulative Prospect Theory (CPT) [1, 2] is a leading empirical model of human risk-
processing from behavioral economics.

* We seek to incorporate CPT into deep RL, producing agents that process risk more
intelligently.
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Methods
Standard RL

CPT-RL
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* Asingle (often convex) reward
function makes it difficult to enact
risk-sensitive strategies

* Unweighted averaging means rare
events have minimal impact
(regardless of consequences)
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« We build on work [3] from UMD that allows agents to optimize the CPT value instead of expected reward.
- The UMD method does not apply to deep networks.

* We introduce Deep CPT-RL, a method for fine-tuning trained DRL networks [4] to optimize CPT value.
« Our method allows other distributional shaping strategies (e.g. Conditional Value at Risk (CVaR)).
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A Two-Stage Approach to Modifying Reward Distributions
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We seek to shift the distribution of outcomes in order to mitigate negative outcomes.




CPT Value Estimation [3]

Algorithm 1 CPT-value estimation for Holder continuous
weights

1: Simulate n 1.1.d. samples from the distribution of X.
2: Order the samples and label them as fol-

lows: X11s X125 -+ s X[ Note that
ut(Xpy),...,ut (X)) are also in ascending or-
der.

3: Let
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4: Apply u~ on the sequence { X[y}, X[2),. .., X[, }; no-
tice that 4™ (X7;)) is in descending order since u ™~ is a
decreasing function.

5: Let

6: Return C,, = C, — C,,.
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» This procedure allows a numerical

estimation of CPT value via sampling.



Simultaneous Perturbation Stochastic Approximation

» SPSA [5] is an efficient method for numerical
gradient estimation.

» Simultaneously perturbs each parameter, rather
than doing them one at a time (as in finite
differences (FDSA)).

« Gives more noisy but much more efficient gradient
estimates.
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Crowd Navigation Simulation

In the CrowdSim environment [6], a single
robot navigates from a starting location to a
goal location, trying to avoid people who are
passing through.

The people in the simulation proceed from
randomized starting points to randomized goal
points, trying to avoid collisions with each other.

In our configuration, the robot is invisible to the
people and the episode ends when a collision
occurs.

Here, risk is measured in the willingness of
the agent to risk collisions in the pursuit of
speed.
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Quantitatively Different Behavior
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» On average, CPT-based agent is more deliberate than AVG-
based agent, leading to more progress before a collision.
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lllustrative Example 1
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lllustrative Example 2
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Summary and Future Work

* We have developed a method for modifying the distribution of outcomes for DRL agents.
« Our approach allows for optimization of quantities beyond expected reward.

« Agents trained to maximize CPT value demonstrate quantitatively different behavior than those trained to
maximize average total reward.

 Areas of current and future research include
- Methods for making this learning more robust
- Exploration of behaviors induced by different distributional objectives
- Application to more complex and realistic environments

CPT Weight Function
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