

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMY RESEARCH LABORATORY

Multi-modal Generative Adversarial Networks Make Realistic and Diverse but Untrustworthy Predictions When Applied to III-posed Problems

John S. Hyatt, Michael S. Lee Computational & Information Sciences Directorate

Approved for public release: distribution unlimited

02/08/2021

Multi-modal Generative Adversarial Networks Make Realistic and Diverse but Untrustworthy Predictions When Applied to III-posed Problems

Generative Models

- Converts latent space representation to data space
- Latent space Z: "string of numbers"
- Data space X: e.g., image
- GANs, VAEs, autoregressive models, INNs

Generative Adversarial Networks (GANs)

Two models

- Generator, G
- Discriminator or Critic, C

Trained adversarially

- $G(\mathbf{z})$ generates output in X-space.
- $C(\mathbf{x})$ learns "x is real."
- $C(G(\mathbf{z}))$ learns " $G(\mathbf{z})$ is fake."

Two models

- Encoder, E
- Decoder, D

Trained sequentially

- $E(\mathbf{x})$ gives a <u>distribution</u> in *Z*-space.
- Not like an autoencoder, which gives a single point!
- $D(E(\mathbf{x}))$ attempts to reconstruct **x**.
- After training, $D(\mathbf{z})$ is the generative model.

Multi-modal Generative Adversarial Networks Make

Realistic and Diverse but Untrustworthy Predictions When Applied to III-posed Problems

Multi-modality is hard

- Conditional problems (additional input Y)
- Normal generative models can't combine Y & Z inputs.
- Tend to return the same prediction for a given y.

Multi-modal Generative Adversarial Networks Make Realistic and Diverse but Untrustworthy Predictions When Applied to III-posed Problems

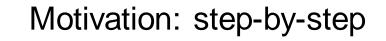
Progress has been made in this area

- BicycleGAN: combines (conditional) GAN and VAE
- Produces realistic and diverse outputs:

(a) Input night image

(b) Diverse day images sampled by our model

From: Zhu et al, "Toward Multimodal Image-to-Image Translation," NIPS 2017.



Multi-modal Generative Adversarial Networks Make Realistic and Diverse but Untrustworthy Predictions When Applied to III-posed Problems

Common in ML:

- Does the problem have a solution? (Out-of-distribution classification)
- Is the solution a continuous function of initial conditions? (Adversarial examples)
- Is the solution unique?

- Multi-modal Generative Adversarial Networks Make Realistic and Diverse but <u>Untrustworthy</u> Predictions When Applied to III-posed Problems
- "Many" generative problems are aesthetic
 - "Does the result look realistic?"
- Some applications have more stringent criteria:
 - Risk management
 - Uncertainty quantification
 - etc.

What exactly do we want?

- A way to <u>bijectively</u> map between *X* and *Z* representations for some partial information *Y*
 - Inverse problems / one-to-many maps
 - "Extreme" super-resolution (feature generation)
 - Denoising audio
 - Etc.

Sample $\mathbf{z} \sim p_{Z}(\mathbf{z}) \rightarrow \text{generate } G(\mathbf{y}, \mathbf{z}) \rightarrow \text{sample } \mathbf{x} \sim p_{X|Y=\mathbf{y}}(\mathbf{x})$

And know that $p_{X|Y=y}(\mathbf{x})$ really is the right distribution!

<u>X = data space, Z = latent space, Y = conditioning info</u>

Zhu et al, "Toward Multimodal Image-to-Image Translation," NIPS 2017.

Three models:

- Generator, $G: Y, Z \rightarrow X$
- Encoder, $E: X \rightarrow Z$
- Discriminator, C

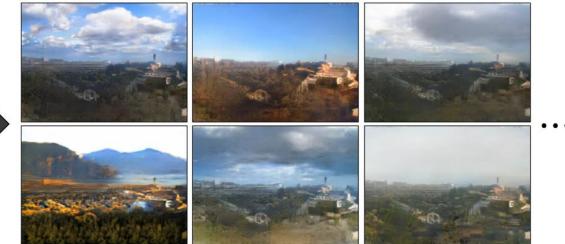
Optimized on:

- "Is G(y,z) realistic?"
- "Is E(G(y,z)) close to z?"
- "Is $G(E(\mathbf{x}))$ close to \mathbf{x} ?"
- "Make Es output resemble a Gaussian, $\mathcal{N}(\mathbf{0},\mathbf{1})$."

Asking G and E to invert each other...sort of

- E has no (conditional) Y input
- E outputs a point cloud rather than a point
- Training isn't symmetric for G and E
- No direct examination of how accurately *E* and *G* learn distributions

(a) Input night image



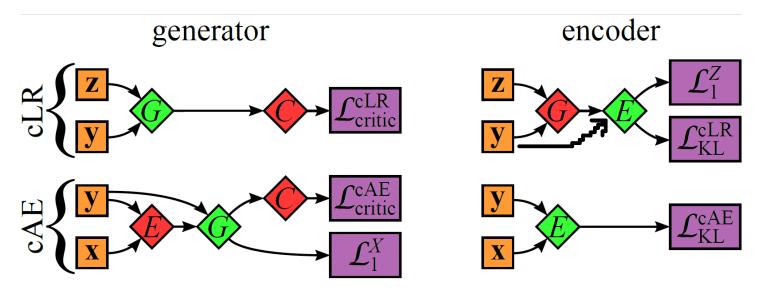
(b) Diverse day images sampled by our model

From: Zhu et al, "Toward Multimodal Image-to-Image Translation," NIPS 2017.

BicycleGAN doesn't produce desired distributions (on a much simpler problem).

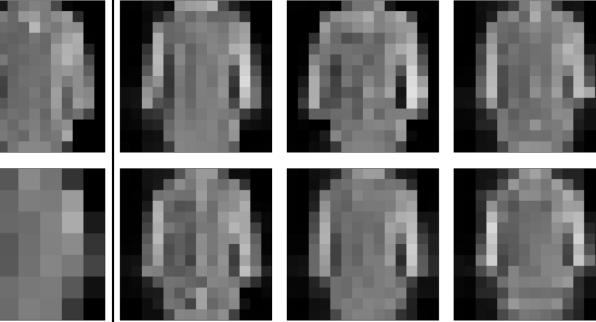
What if we change BicycleGAN:

- Change encoder to $E: Y, X \rightarrow Z$
- Make E deterministic rather than variational
- Split cycle consistency losses between E and G



E and G never truly learn to invert one another. Results are diverse and realistic...

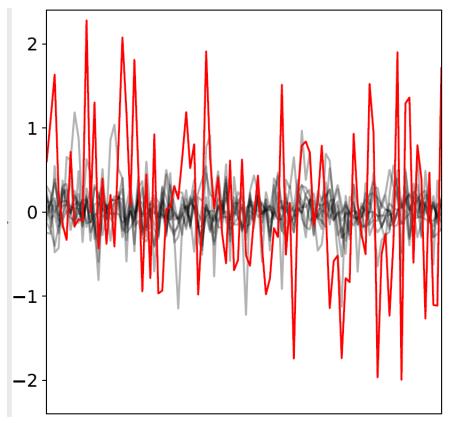
ground truth



conditioner

...but not representative.

– Looking at Z-space representations:



Gaussian (correct distribution)

Learned distribution

Big takeaways:

Realism and diversity <u>DO NOT</u> mean a model has learned the target distribution!

Representativeness <u>SHOULD NOT</u> be taken for granted!

Encoder/decoder model pairs are hard to train. It may make more sense to look at *explicitly invertible* models

Invertible Neural Networks are naturally bijective maps.

 Conditional INNs are understudied, but very promising.

