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Adversarial Examples in Deep Learning 

▌Deep learning is useful for many applications including security 
critical services such as face recognition.

▌An adversarial example (AX) is inconceivably perturbed input that 
can deceive deep learning.

▌A deep learning-based security critical service is no longer reliable 
under attacks by AXs.
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Previous Methods for Preventing AXs

▌Adversarial Training and Ensemble Diversity Promotion are 
most successful methods for mitigating AXs. 

Adversarial Training generates AXs and use them in the training [Zhong and 
Deng, 2019].

Adaptive Diversity Promoting (ADP) promotes non-maximal predictions of 
multiple models to be diverse [Pang et al., 2019].

▌No methods are sufficient, and all methods need improvement.
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Feature Extractor and Ensemble Diversity

▌A feature extractor, once trained, works for new classes without 
training. Face recognition typically relies on a feature extractor.

▌Ensemble diversity has not been applied to feature extractor for 
preventing AXs
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Problem and Goal

▌Problem

We applied Adaptive Diversity Promotion (ADP) to face recognition directly.

Our experiment shows that it neither improved the robustness to AXs nor 
sacrificed accuracy at all.

▌Goal

 Introduce the ensemble diversity to feature extractor in the right manner.

Obtain face recognition that is more robust to AXs.

Help apply more deep learning to security critical infrastructures.
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Our Diagnosis

▌Features are comparable only with respect to weight vectors.

ℒ𝐶𝐸 𝑥, 𝑦 = log
𝑒𝑊𝑦∙𝑓(𝑥)

σℓ=1
𝑛 𝑒𝑊ℓ∙𝑓(𝑥)
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Our Method

▌Share weight vectors of the final layer by all models.

The weight vectors provide a measure for the direction of the feature. 

▌Promote the diversity of ensemble features

Direct objective of the diversity promotion

Share weight vectors 
as a reference frame

Promote diversity of 
feature vectors directly
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Experiment - Setup

▌Data, Model, Attack, 

Training dataset: MS1MV2

Test dataset: VGG2

Number of models in ensemble: 3

Architecture: MobileFaceNet

Attack: LOTS via I-FGSM, BIM, CW until successful impersonation. No limit for 
perturbation size 

▌Evaluation Metric: Attack success rate by AXs with different size of 
input perturbation/feature distance.
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Experiment - Accuracy

▌Test in various data sets

Our method does not sacrifice accuracy.

LFW CFP-FP AgeDB-30

Single model 99.30 89.60 94.22

ADP 98.90 86.20 90.52

AdvT* 99.21 90.80 94.38

Our method 99.40 89.97 95.15

*Zhong and Deng, 2019
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Experiment - Robustness against White-box Attacks

▌Comparison of “attack success rate” for different “perturbation 
size” 

LOTS via I-FGSM

Our method is most robust in the white-box attacks.
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Experiment - Robustness against Black-box Attacks

▌Comparison of “attack success rate” for AX to the single model with 
different “distances in feature”

LOTS via I-FGSM

Our method is most robust under black-box attacks
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Conclusion

▌Feature extractor is essential for face recognitions.

▌Promotion of ensemble diversity is one of promising method to 
prevent AXs. However, we could not apply it to feature extractor 
directly.

▌We presented how to introduce ensemble diversity among feature 
extractors for robust face recognition without compromising the 
accuracy.

▌Our method shows better robustness compared to adversarial 
training (although the evaluation is not versatile as others.)


