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Adversarial Examples in Deep Learning

| Deep learning is useful for many applications including security
critical services such as face recognition.

| An adversarial example (AX) is inconceivably perturbed input that

can deceive deep learning.
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| A deep learning-based security critical service is no longer reliable
under attacks by AXs.
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Previous Methods for Preventing AXs

| Adversarial Training and Ensemble Diversity Promotion are
most successful methods for mitigating AXs.

® Adversarial Training generates AXs and use them in the training [Zhong and
Deng, 2019].

® Adaptive Diversity Promoting (ADP) promotes non-maximal predictions of
multiple models to be diverse [Pang et al., 2019].

CNN » FC |—— 7

data CNN |—| FC

— /
volume
CNN |—[ FC _>\/

Vectors of non-maximal prediction
| No methods are sufficient, and all methods need improvement.
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Feature Extractor and Ensemble Diversity

| A feature extractor, once trained, works for new classes without
training. Face recognition typically relies on a feature extractor.
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| Ensemble diversity has not been applied to feature extractor for

preventing AXs
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Problem and Goal

] Problem

® We applied Adaptive Diversity Promotion (ADP) to face recognition directly.

® Our experiment shows that it neither improved the robustness to AXs nor
sacrificed accuracy at all.

| Goal

® Introduce the ensemble diversity to feature extractor in the right manner.
® Obtain face recognition that is more robust to AXs.
® Help apply more deep learning to security critical infrastructures.
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| Features are comparable only with respect to weight vectors.

weights Wy-f (x) features
LCE (X, y) lOg W{) f(;)7
Direct Application Our Method
4 ) 4

features featu re\s
0
0 6

\weight;\/v ) \ weights % )
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but not compared to their weights compared to their same weights
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Our Method

| Share weight vectors of the final layer by all models.
® The weight vectors provide a measure for the direction of the feature.
| Promote the diversity of ensemble features

® Direct objective of the diversity promotion o
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Experiment - Setup

| Data, Model, Attack,
® Training dataset: MS1MV2
® Test dataset: VGG2
® Number of models in ensemble: 3
® Architecture: MobileFaceNet

® Attack: LOTS via I-FGSM, BIM, CW until successful impersonation. No limit for
perturbation size

| Evaluation Metric: Attack success rate by AXs with different size of
input perturbation/feature distance.
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Experiment - Accuracy

| Test in various data sets

I I A [ AgeDB-30

Single model 99.30 89.60 94.22
ADP 98.90 86.20 90.52
AdvT* 99.21 90.80 94.38
Our method 99.40 89.97 95.15

*Zhong and Deng, 2019

Our method does not sacrifice accuracy.
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Experiment - Robustness against White-box Attacks

| Comparison of “attack success rate” for different “perturbation
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Our method is most robust in the white-box attacks.
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Experiment - Robustness against Black-box Attacks

| Comparison of “attack success rate” for AX to the single model with
different “distances in feature”

10 -
0.8 1
=
(™)
m
5
S 06 -
<T
¥4
g
< 04 -
—&— Baseline
0.2 - ADP
=& Our method

T T T T L T T T T
12 11 10 09 0.8 0.7 06 05 0.4
distance in feature space

LOTS via I-FGSM
Our method is most robust under black-box attacks
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Conclusion

| Feature extractor is essential for face recognitions.

| Promotion of ensemble diversity is one of promising method to
prevent AXs. However, we could not apply it to feature extractor
directly.

| We presented how to introduce ensemble diversity among feature
extractors for robust face recognition without compromising the
accuracy.

| Our method shows better robustness compared to adversarial
training (although the evaluation is not versatile as others.)
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