Feature Space Singularity: Out-of-Distribution Samples Concentrate in Trained Neural Networks

Haiwen Huang, Zhihan Li, Lulu Wang, Sishuo Chen, Xinyu Zhou, Bin Dong SafeAl, Feburary 2021

Contents

Background: OOD detection for Al Safety

OOD detection for AI safety

Traffic signs in the training set

Unseen traffic signs

- ♦ OOD samples can cause unintended and harmful behaviors of current machine learning systems
- We want to detect OOD samples and make later actions accordingly.

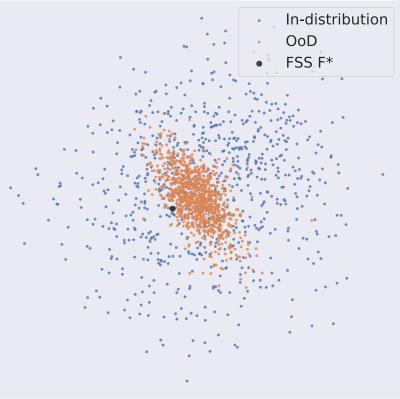
Current methods for OOD detection are not good enough

- ♦ Two major concerns: performance and computational cost
 - ♦ Single-model methods (e.g., ODIN, MC Dropout) don't perform well

♦ Can we use a single model and still achieve high performance?

Observation and Analysis: OOD samples concentrate in the feature space

OOD samples concentrate in the feature space



The phenomenon seems universal

- We have tested:
 - ♦ Architecture: MLP, LeNet, ResNet, DenseNet, bi-LSTM
 - ♦ Activation function: ReLU, Tanh
 - ♦ Loss: Cross Entropy loss, Triplet loss, L2-loss

 - ♦ Supervised learning, unsupervised learning (Instance Discrimination)

Explanation: Different moving speeds of features

The "moving speed" of features:

$$\frac{\mathrm{d}F_{\theta_{t}}\left(x\right)}{\mathrm{d}t} = \frac{\partial F_{\theta_{t}}\left(x\right)}{\partial \theta_{t}} \frac{\mathrm{d}\theta_{t}}{\mathrm{d}t}$$

Note x can be any input; x_m are the training data

$$= -\sum_{m=1}^{M} \frac{\partial F_{\theta_t}(x)}{\partial \theta_t} \frac{\partial F_{\theta_t}(x_m)^{\mathsf{T}}}{\partial \theta_t} \partial_m \mathcal{L}_{\phi}$$

Algorithms and Experiments

Algorithm: Ensemble different layers

```
Algorithm 1: Computation of FSSD-Ensem
 Input: Test samples x = \{x_n^{\text{test}}\}_{n=1}^N, noise samples
            \{x_s^{\text{noise}}\}_{s=1}^S, ensemble weights \alpha_k,
            perturbation magnitude \epsilon,
            feature extractors \{F_{(k)}\}_{k=1}^{K}
 for each feature extractor \{F_{(k)}\}_{k=1}^K do
      1. Estimate FSS F_{(k)}^* = \sum_{s=1}^{S} F_{(k)}(x_s^{\text{noise}})/S,
        where x_s^{\text{noise}} \sim \mathcal{U}[0,1], s = 1, \cdots, S
      2. Add perturbation to test sample:
        \tilde{x} = x + \epsilon \operatorname{sign}(\nabla_{x} || F_{(k)}(x) - F_{(k)}^{*} ||)
      3. Calculate FSSD^{(k)}(x) = ||F_{(k)}(\tilde{x}) - F_{(k)}^*||
 end
 Return FSSD-Ensem (x) = \sum_{k=1}^{K} \alpha_k \text{ FSSD}^{(k)}(x)
```

Evaluation metrics

- ♦ AUROC: Area Under the Receiver Operating Characteristic curve.
- ♦ AUPRC: Area Under the Precision-Recall Curve.
- ♦ FPR80: False Positive Rate when the true positive rate is 80%.

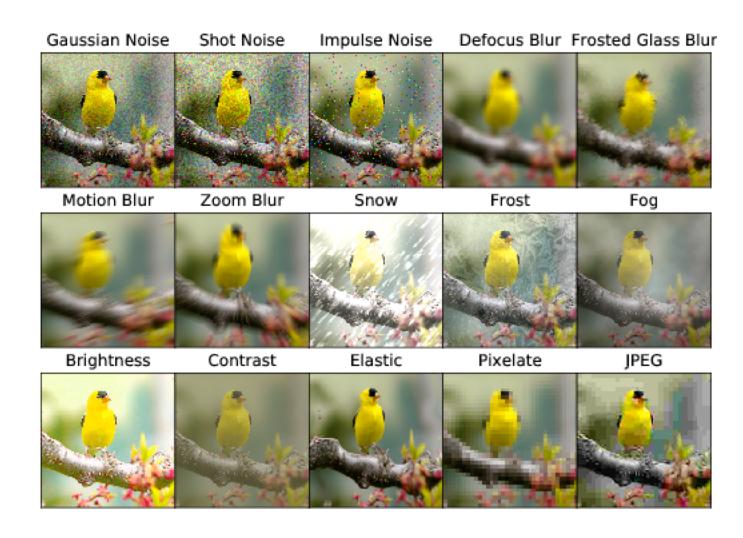
Experiments: Detecting OOD datasets

Table 2: Main results. All values are in %.

	Datasets (Architecture)	Metrics	Base	ODIN	Maha	DE	MCD	OE	FSSD
Small-scale benchmarks	FMNIST vs. MNIST (LeNet)	AUROC AUPRC FPR80	77.3 79.2 43.5	96.9 93.0 2.5	99.6 99.7 0.0	83.9 83.3 27.5	81.7 85.3 36.8	99.6 99.6 0.0	99.6 99.7 0.0
	CIFAR10 vs. SVHN (ResNet34)	AUROC AUPRC FPR80	89.9 85.4 10.1	96.7 92.5 4.7	99.1 98.1 0.3	93.7 90.6 3.7	96.7 93.9 2.4	90.4 89.8 12.5	99.5 99.5 0.4
	ImageNet dogs vs. non-dogs (ResNet34)	AUROC AUPRC FPR80	88.5 86.1 19.5	90.8 88.6 15.2	83.3 83.0 30.1	89.0 89.0 18.8	67.2 66.9 59.2	92.5 92.6 7.9	93.1 92.5 10.2
Large-scale benchmarks	CelebA non-blurry vs. blurry (ResNeXt50)	AUROC AUPRC FPR80	71.7 89.9 52.0	73.3 91.4 50.3	73.9 90.9 46.0	74.5 91.4 47.1	69.8 88.7 53.2	71.5 90.7 54.2	78.3 92.8 39.2
	MS-1M vs. IJB-C (ResNeXt50)	AUROC AUPRC FPR80	60.0 53.3 61.8	61.3 55.9 59.4	82.5 80.6 29.6	63.0 56.1 56.7	65.5 59.4 58.8	52.6 46.6 64.2	86.7 86.1 22.1
Sequence benchmark	Bacteria Genome (LSTM)	AUROC AUPRC FPR80	69.6 69.9 57.4	70.6 71.9 55.9	70.4 69.3 53.7	70.0 56.0 30.0	69.3 70.2 58.3	NA NA NA	74.8 75.8 47.4

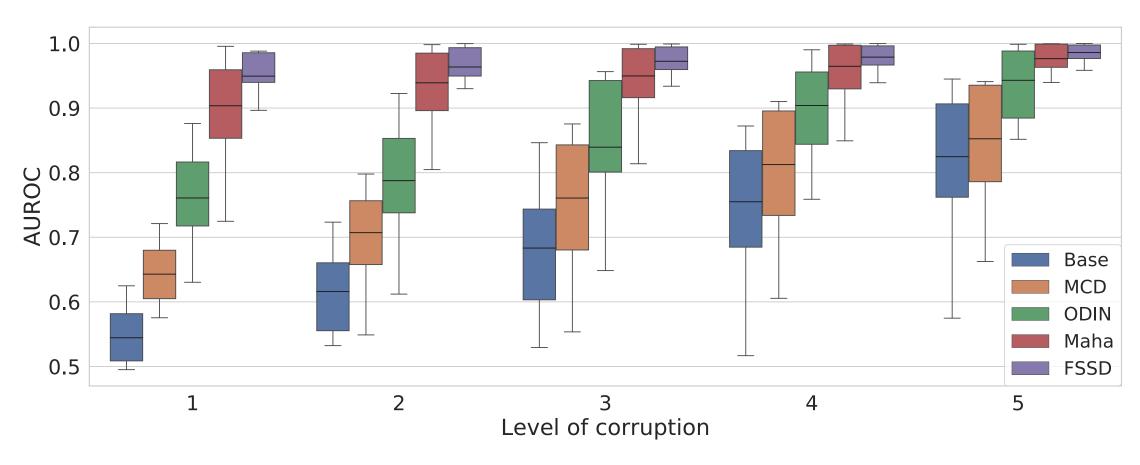
Different scales, different data types

Experiments: Detecting image corruption



Corruption datasets come from ImageNet-C datasets, which contain 16 types of corruptions and each corruption has 5 different levels

Experiments: Detecting image corruption



FSSD has higher mean and smaller variance across different corruptions.

Analysis of ensemble

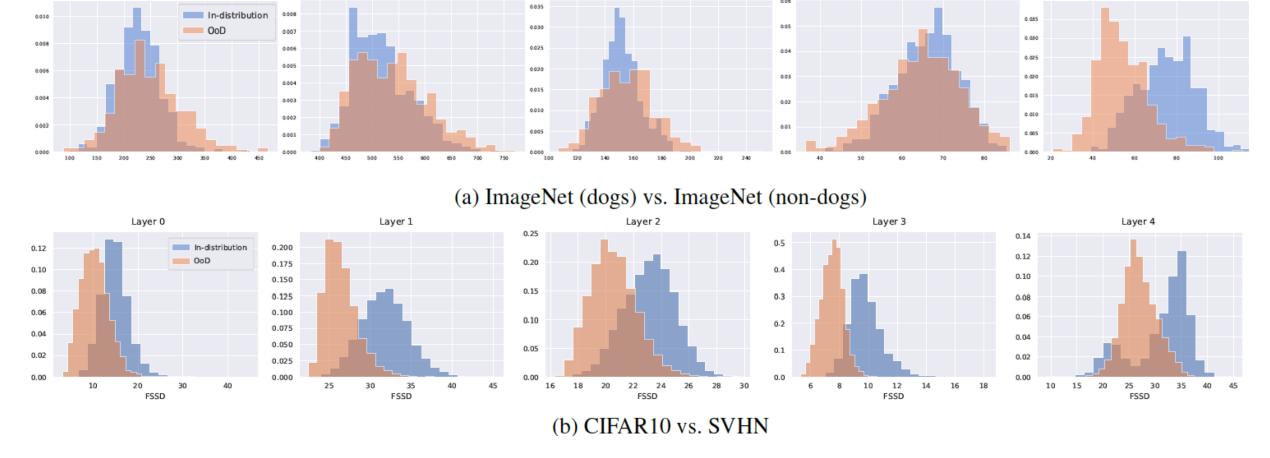
Layer 2

Layer 3

Layer 4

Layer 1

Layer 0



Early layers correspond to low-level statistics; deeper layers correspond to high-level semantics.

Outlook: What's next?

Failure cases?

- ♦ We have just seen some successful cases of exploiting the feature space singularity to detect OOD samples. But there are also failure cases, e.g., CIFAR-10 vs CIFAR-100.
- ♦ Explaining and mitigating the failure cases can lead to clean separation of OOD and in-distribution data/features.
- ♦ Future directions:
 - Inductive bias of neural network (neural tangent kernel) on OOD inputs, e.g., input norm;
 - ♦ Disentangling spurious features shared by OOD data;
 - Constraining the learning process to for better OOD detection, e.g.,
 adding bi-Lipschitz constraints, using OOD-related loss functions.

THANK YOU!

Code repository:

https://github.com/megvii-research/FSSD_OoD_Detection

Implemented Algorithms

In this repository, we implement the following algorithms.

Algorithm	Paper	Implementation		
FSSD	Feature Space Singularity for Out-of-Distribution Detection	test_fss.py		
Baseline	A BASELINE FOR DETECTING MISCLASSIFIED AND OUT-OF-DISTRIBUTION EXAMPLES IN NEURAL NETWORKS	test_baseline.py		
ODIN	Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks	test_odin.py		
Maha	A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks	test_maha.py		
DE	Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles	test_de.py		
OE	Deep Anomaly Detection with Outlier Exposure	test_baseline.py		