

A Study on Multimodal and Interactive Explanations for Visual Question Answering

Kamran Alipour,¹ Jurgen P. Schulze,¹ Yi Yao,² Avi Ziskind,² and Giedrius Burachas ²

¹UC San Diego

²SRI International

Introduction

Visual Question Answering

- Answering a question in natural language regarding a given image
- Attention-based models on image features influenced by the question to produce answers

Introduction

eXplainable AI (XAI)

- Used for years in medicine, robotics, ...
- Mainly attention-based
- Various formats: visual, textual, ...

Contributions

- Generated multiple explanation modes from attention features and annotations
- Introduced an interactive explanation mode
- Prediction task: A novel assessment of the efficacy of explanations
- A user study to evaluate our XAI system

Computer Science and Engineering

eXplainable Visual Question Answering (XVQA)

User Study

Input

- Images and Questions
- Explanations
- VQA correctness and confidence

TASK:

- Rank explanations
- Predict if VQA answers correctly based on explanations.

User Study

Subjects:	90
Trials:	10513

Group		
NE	Control group	
SP	Spatial attention	
SA	Active (steerable) attention	
SE	Semantic	
OA	Object attention	
AL	All explanations	

Explanation modes

Spatial attention

Shows the parts of the image the model is focused on while preparing the answer.

QUESTION: Where is this place?

ANSWER: Airport.

Explanation modes

Active (streerable) attention

Explanation modes

Semantic:

Bounding box

Explanation modes

Semantic:

Textual Explanation [Ghosh et al. 2019]

QUESTION: What is this sport?

ANSWER: Soccer.

Explanations:

Because the image contains: **white line** on **soccer field** Because the image contains: **man** on **soccer field** Because the image contains: **soccer shorts** with **numbers**

Explanation modes

Object attention [Ray et al. 2019]

QUESTION: What food is he eating?

ANSWER: Sandwich.

Results

Prediction accuracies in different study groups

Results 100 80 User Prediction Accuracy (%) 60 40 Spatial Att. (SP, AL) Scene Graph (SE, AL) 20 Bounding Boxes (SE, AL) Object Att. (OA, AL) Textual (SE, AL) 0 not at all slightly somewhat extremely very Helpfulness

Prediction accuracy vs. explanation ratings when system accurate

Prediction accuracy vs. explanation ratings when system inaccurate

Results

User Prediction Accuracy (%) Exp. Blocks **Control Blocks** Trials Prediction accuracy progress

Results

User confidence progress: Active attention vs. other explanations

Discussion

- Interactive explanations improved users confidence compared to other explanations
- When AI is inaccurate, explanations are more helpful
- Getting exposed to multiple explanation modes can be conflicting/overwhelming and reduce prediction accuracy

Computer Science and Engineering

Conclusion and Future Work

- Interactive experiment to probe explanation effectiveness
- Explanations help accuracy prediction
- Users confidence improved when exposed to explanations

Thank You!

User Study Statistics

Group		Subjects	Trials
NE	Control group	15	4124
SP	Spatial attention	15	1826
SA	Active (steerable) attention	15	1021
SE	Semantic	15	1261
OA	OA Object attention		1435
AL	All explanations	15	846
Total :		90	10513

User Study Structure

User Study Structure

Input

- Images and Questions
- Explanations
- VQA correctness and confidence

TASK:

- Rank explanations
- Predict if VQA answers correctly based on explanations.

